• Title/Summary/Keyword: Tool life

Search Result 2,291, Processing Time 0.032 seconds

Characteristics of Tool Life according to the Cutting Direction and Cutting Speed in Machining on Inclined Plane using Ball End Mill (볼 엔드밀의 경사면 가공에서 공구경로와 절삭속도에 따른 공구수명의 특성)

  • 박윤종;김경균;강명창;김정석;이득우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.240-244
    • /
    • 1999
  • This paper deals with the establishment of the cutting direction on inclined plane by using ball end mill. Ball-end milling is widely used for free form surface die and mold. In these machining, the cutting parts vary because the tool tip is hemisphere shaped. The cutting characteristics, such as cutting force, surface roughness and surface profile are varied according to the variation of cutting directions. The effective tool diameter was calculated on different tilt angles and tool-path. Tool life and cutting characteristics were estimated on variation of cutting directions in the same cutting speed. In this paper, the optimal cutting direction which can be applied 3-D sculpture surface cutting is suggested.

  • PDF

Health Status Assessment Tool Development based on Dietary Patterns in Middle-Aged Women (중년 여성의 식생활 중심 건강상태 판정 도구 개발)

  • Lee, Hye-Jin;Lee, Kyung-Hea
    • Korean Journal of Community Nutrition
    • /
    • v.21 no.1
    • /
    • pp.37-52
    • /
    • 2016
  • Objectives: This study was performed to develop an assessment tool for middle aged women's health status based on dietary patterns, which will have practical applications in the working field of health and hygiene, aiming at improving the middle aged women's quality of life through their health improvement. Methods: As a first step, a literature review was conducted and the original data of '2008~2009 Korea Health and Nutrition Examination Survey' were reanalyzed. This analysis identified 65 preliminary questions that may be relevant to the study. After verifying the content validity by experts, the 65 questions were reduced into 51 questions. In order to secure higher validity of the candidate items, verification of their clinical validity was conducted among women aged between 45 and 60 years. Finally, an assessment tool was developed by applying weight and scoring. Results: Selected 51 questions were used to verify clinical validity and the results showed that 20 questions were relevant, nine questions ('regular meal time', 'regular amount of meal', 'intake frequency of dairy products', 'intake frequency of fruits', 'intake frequency of meat products', 'intake frequency of high cholesterol foods', 'intake frequency of salty foods', 'appetite', 'eat breakfast everyday') were related to dietary life. Eleven other questions ('self-rated health status', 'deep sleep', 'smoking', 'frequency of drinking', 'stress levels', 'health-related fitness levels', 'pounding of the heart', 'strange feelings on the skin', 'interfere with daily life', 'menopause will bring you a chance to see the life in a different perspective', and 'body mass index') were selected as valid questions. For the response scale for each question, 5 point Likert scale was used to make total 100 point score. Conclusions: This study is the first attempt to develop a health status assessment tool for middle aged women based on their dietary patterns. We conclude that this tool is expected to be a useful and practical tool in the field.

Tool-Setup Measurement Technology of High Speed Precision Machining Tool (고속 정밀 가공기의 공구셋업 측정기술)

  • 박경택;신영재;강병수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1066-1069
    • /
    • 2004
  • Recently the monitoring system of tool setup in high speed precision machining tool is required for manufacturing products that have highly complex and small shape, high precision and high function. It is very important to reduce time to setup tool in order to improve the machining precision and productivity and to protect the breakage of cutting tool as the shape of product is smaller and more complex. Generally, the combination of errors that geometrical clamping error of fixing tool at the spindle of machining center and the asynchronized error of driving mechanism causes that the run-out of tool reaches to 3∼20 times of the thickness of cutting chip. And also the run-out is occurred by the misalignment between axis of tool shank and axis of spindle and spindle bearing in high speed rotation. Generally, high speed machining is considered when the rotating speed is more than 8,000 rpm. At that time, the life time of tool is reduced to about 50% and the roughness of machining surface is worse as the run-out is increased to 10 micron. The life time of tool could be increased by making monitoring of tool-setting easy, quick and precise in high speed machining center. This means the consumption of tool is much more reduced. And also it reduces the manufacturing cost and increases the productivity by reducing the tool-setup time of operator. In this study, in order to establish the concept of tool-setting monitoring the measuring method of the geometrical error of tool system is studied when the spindle is stopped. And also the measuring method of run-out, dynamic error of tool system, is studied when the spindle is rotated in 8,000 ∼ 60,000 rpm. The dynamic phenomena of tool-setup is analyzed by implementing the monitoring system of rotating tool system and the noncontact measuring system of micro displacement in high speed.

  • PDF

A Study on Die Wear Model considering Thermal Softening(II) -Application of Suggested Wear Model (열연화를 고려한 금형마멸모델에 관한 연구(II) -마멸모델의 적용)

  • Kang, Jong-Hun;Park, In-Woo;Jae, Jin-Soo;Kang, Seong-Soo
    • Transactions of Materials Processing
    • /
    • v.7 no.3
    • /
    • pp.282-290
    • /
    • 1998
  • In bulk metal forming processes prediction of tool life is very important for saving production cost and achieving good material properties. Generally the service life of tools in metal forming process is limited to a large extent by wear, fracture and plastic deformation of tools. In case of hot and warm forging processes tool life depends on wear over 70%. In this study finite element analyses are con-ducted to warm and hot forging by adopting suggested wear model. By comparison of simulation and eal profile of die suggested wear model. By comparison of simulation and real profile of die suggested model is verified.

  • PDF

A Study on Die Wear Model considering Thermal Softening(I) -Construction of Wear Model (열연화를 고려한 금형마멸모델에 관한 연구(I)-마멸모델의 정립)

  • Kang, Jong-Hun;Park, In-Woo;Jae, Jin-Soo;Kang, Seong-Soo
    • Transactions of Materials Processing
    • /
    • v.7 no.3
    • /
    • pp.274-281
    • /
    • 1998
  • The service life of tools in metal forming process is to a large extent limited by wear, fatigue fracture and plastic deformation. In elevated temperature forming processes wear is the predominant factor for tool operating life. To predict tool life by wear Achard's model is generally applied. Usually hardness of die is considered to be a function of temperature. But hardness of die is a function of not only tem-perature but also operating time of die. To consider softening of die by repeated operation it is necessary to express hardness of die by a function of a function of temperature and time. By experiment of reheating of die softening curve was obtained and applied to suggest modified Archard's Model in which hardness is a function of main tempering curve.

  • PDF

A Study on the Life Time Broadening of Die parts Manufactured in W-EDM (W-EDM에 의한 금형제작에서의 수명연장에 관한 연구)

  • Kim Sei-hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.6
    • /
    • pp.511-514
    • /
    • 2004
  • Punch and die plate which are press die parts can be made using machine tool or using both machine tool and W-EDM. When machine tool is used, the die life is 2,000,000 to 230,000 strokes. But with W-EDM, the die life is 700,00 to 800,000 strokes. This can be caused by the process deformation layer after W-EDM. SEM pictures of processed section before and after W-EDM are taken to see if the process deformation layer appeared. Also the elimination method is studied.

  • PDF

Regrinding Effect of Flat End-Mill Tool for Recycling of Tungsten Carbide (WC-Co) Material (초경소재 재활용을 위한 플랫 엔드밀공구의 재연삭 효과)

  • Kang, Myung-Chang;Kim, Min-Wook;Kwon, Dong-Hee;Park, In-Duck;Jeong, Young-Keun
    • Korean Journal of Materials Research
    • /
    • v.18 no.12
    • /
    • pp.635-639
    • /
    • 2008
  • In this paper, experimental studies of the regrinding of tungsten carbide (WC-Co) tools for high-speed machining were conducted. Regrinding and a subsequent evaluation test were carried out for a flat endmill tool with diameters of 10 mm and 3 mm using a CNC five-axis tool grinder and a CNC three-axis machining center. Tool wear on the two types of endmill tools increased as the cutting length increased, and the tool wear was not influenced by the regrinding state. In case of the micro endmill with a tool diameter of 3 mm, the effective regrinding time was determined for a flank wear threshold of 0.3 mm considering the tool life according to cutting length. The tool lives of the 10 mm and 3 mm endmill tools were increased by 80% and 72%, respectively. This conclusion proves the Feasibility of the recycling of tungsten carbide materials in the high-speed machining of high-hardened materials for industrial applications.

Tool Wear Monitoring using Time Series Model and Fractal Analysis (시계열 모델과 프랙탈 해석을 이용한 공구마멸 감시)

  • 최성필;강명창;이득우;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.69-73
    • /
    • 1996
  • Tool wear monitoring is very important aspect in metal cutting because tool wear effects quarity and precision of workpiece, tool life etc. In this study we detected force signal through tool dynamometer in turning and using it we conducted 6th AR modeling and fractal analysis. Finally the back-propagation model of the neural network is utilized to monitor tool wear and features are extracted through AR model and fractal analysis.

  • PDF