미세성형품의 금형수명 향상을 위한 연구

A Study to Improve the Tool Life of Micro Forged Part

**이영선 ¹, 이명원 ¹, 이정환 ¹ **Y. S. Lee(lys1668@kims.re.kr)¹, M.W. Lee¹, J.H. Lee¹ 한국기계연구원 부설 재료연구소

Key words: Tool life, Micro part, Shrink fitting, Washer, Stress

1. 서론

미세성형품은 전자부품을 필두로 다양한 분야에서 그 수 요가 증가되고 있다. 종래에는 절삭가공 공정을 이용하여 제조하던 것을 수요증가와 성형기술의 발달로 인해 가공방 법을 뛰어 넘는 공정개발을 위해 미세성형기술의 개발이 촉진되어 적용이 이루어지고 있다. 미세성형기술은 종래기 술 보다 생산속도 측면에서 많은 장점을 갖고 있지만, 높 은 치수정밀도를 만족시켜야 하는 기술적인 문제를 해결하 기 위해 관련기술 전반에 대한 연구가 필요하며, 경제성 부여를 위해서는 사용되는 공구(금형)의 수명을 현실적인 수준까지 향상시켜야 하는 어려움이 존재한다.

본 연구에서는 미세성형품 가운데 하나인 핀 힌지(Pin Hinge)라는 부품을 냉간단조에 의해 성형할 때 발생되는 금형의 수명저하 문제점을 분석하고 수명향상을 위해 필요 한 기술적 해결방안을 마련하고자 하였다.

2. 공구의 파손원인 분석

핀 힌지는 IT부품에 사용되는 미소부품으로서 기존에는 기계가공을 통해 제조되 오던 것을 성형을 통해 제조하게 된 것으로서 형상과 치수는 Fig. 1과 같다. 사용되는 소재는 스테인레스강(SUS XM-7)이며 금형은 초경 인서트를 합금강 이 보강링으로 설치되어 있는 구조로서 Fig.2는 금형의 단 면도를 나타내고 있다. Table 1은 SUS XM-7소재의 화학성분 을 나타내고 있으며 초경은 G6소재가 사용되었다.

냉간단조 금형은 단조시에 과도한 응력에 노출되기 때문 에 다른 성형 금형과는 달리 파손현상이 발생되기 쉽다. Fig. 3은 핀 힌지 금형(다이)의 파손 부위사진을 보여주고 있는데, 원주방향으로 크랙이 진행되어 있는 것을 확인할 수 있다. 냉간단조 금형의 파손 유형은 세로균열, 표면균열 과 프레이크 박리, 가로 균열의 3가지 종류가 대표적이며, 이들 가운데 세로균열은 내압을 받는 다이의 인장응력에 의한 파괴현상으로서 그 원인으로는 (1)보강링 예 응력(Prestress)부족, (2)비금속게재물 또는 금속간 화합물 존재, (3)성 형부의 표면에 가공축 방향으로 긁힌 흠이 생성, 성장되어 격자모양의 균열로 진전되는 현상이 대부분을 차지한다. 세로균열의 발생을 억제하기 위해서는 탄성한계가 높은 재 료로 보강링 재질을 변경하는 방법과 보강링의 수를 증가 시키는 방법 등이 있다. 본 연구에서는 이미 2중 보강링 형태를 이용하고 있고 1중 보강링의 재질이 초경소재를 이 용하고 있는 만큼 재질 변경 또한 이용할 수 없는 실정이 다. 따라서, 수치해석을 통해 다이의 각 부분의 치수를 변 경하여 부가응력의 감소현상을 분석하고자 하였다.

3. 보강링 치수변화를 통한 응력감소

Table.1 Chemical composition of SUS XM-7

TT.			0/\	
Un	1T.(Wf.	%)	

					C1110(11 c1 / 0)
Fe	Cr	C	Mn	Ni	P
69	18	0.15	2	9	0.2

Fig. 1 Dimension of pin hinge part

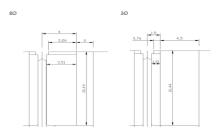
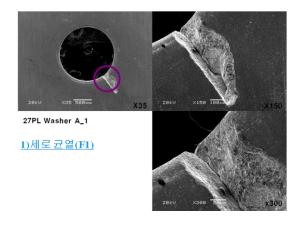



Fig. 2 Drawing of die for pin hinge

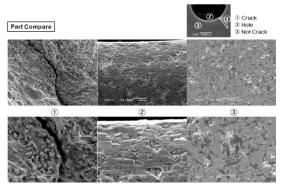


Fig. 3 Photos of die failure

Fig. 3 에서 알 수 있듯이 단조품과 직접 접촉되는 다이 부품가운데 상단 부에 위치하고 있는 와셔(Washer)부분은 반복되는 고압으로 인해 강도부족으로 인해 세로균열이 발 생되고 있다. 따라서, 본 연구에서는 금형의 부가응력을 감 소시킬 수 있도록 와셔의 크기를 변경시킨 후의 응력 변화 를 수치해석을 통해 분석하였다. Fig.4 는 기존 와셔의 크기 인 지름 8mm 를 3mm 로 변경했을 경우의 응력분포를 나타 내는 것으로 최대 주 응력의 크기가 20%이상 감소하고 있 음을 확인 할 수 있다. 인장응력의 값을 20% 이상 감소시 킬 수 있음은 금형의 강도를 20% 이상 향상시키는 효과를 나타낼 수 있는 만큼 수명 향상효과를 기대할 수 있다. Fig. 5 는 최대주응력의 부위별 값을 정량적으로 비교한 값 으로 최대 170MPa 에 달하는 인장응력의 값이 감소하고 있 어 크랙 발생의 가능성이 감소하고 있음을 알 수 있다. 압 축응력 또한 200MPa 이상 감소하고 있어 마모에 대한 저 항력 또한 증가될 수 있음을 확인할 수 있다.

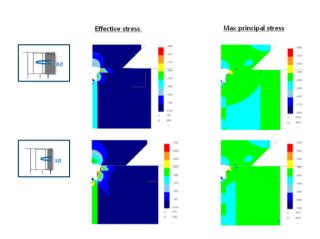


Fig. 4 Stress distributions of die for pin hinge

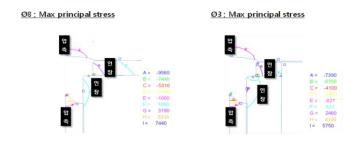


Fig. 5 Maximum principal stress of die for pin hinge

4. 결론

냉간단조로 미세성형품을 제조함으로써 생산성 향상과 제조원가 절감의 장점을 최대한 살리기 위해서는 안정된 금형수명이 무엇보다 중요하다. 그러나 미세성형용 금형은 치수가 작기 때문에 가공하는 것 자체가 어려운 문제점 이외에 금형강도 향상을 위해 이용가능한 방법이 상대적으로 적은 만큼 금형수명 향상을 위해 필요한 세부적인 사항까지 주의를 기울여야 한다. 본 연구에서 분석한 바와 같이 금형 치수의 미소한 차이 또한 금형의 강도에 큰 영향을 미치는 만큼 미세성형품의 경제성 향상을 위해서는 앞으로도 금형수명 향상을 위한 많은 연구의 진행이 필요할 것으로 판단된다.

후기

본 연구는 부품소재기술지원 사업의 일환으로 수행되 었으며으며 이에 관계자 여러분께 감사드립니다.

참고문헌

- 이영선 외, "냉간단조용 금형 수명에 미치는 공정변수의 영향", 한국소성가공학회 2005 춘계학술대회 논문집, pp215-218
- Y.S.Lee, etc. "Effects of process variables affected in die life for cold forging", Conference proceeding of 2005 KSTP spring annual meeting, pp215-218
- Hyunkee Kim, Tetsuji Yagi, Masahito Yamanaka, "FE simulation as a must tool in cold/warm forging process and tool design, J. of Materials Processing Technology, 98 (2000) 143-149
- Conor McCormack, John Managhan, "A finite element analysis
 of cold-forging dies using two- and three-dimensional models",
 J. of Materials Processing Technology, 118 (2001) 286-292
- Victor Vazquez, Daniel Hannan, Taylan Altan, "Tool life in cold foring-an example of design improvement to increase service life, J. of Mateirlas Processing Technology, 98 (2000) 90-96
- Paul C.Miller, 1980, "Deep cold solves heat-treat problems", Tooling & Production, Vol.4, pp82-86
- J.Y.Huang, Y.T.Zhu, X.Z.Liao, I.J.Beyerlein, M.A.Bourke, T.E.Mitchell, 2003, "Microstructure of cryogenic treated M2 tool