• Title/Summary/Keyword: Tool length

Search Result 807, Processing Time 0.02 seconds

Determination of Cutting Orientation in Zigzag Milling Operationa: A Geometrical Approach;

  • Kim, Byeong Keuk;Park, Joon Young;Wee, Nam-Sook
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.186-194
    • /
    • 1997
  • This paper describes new methods to minimize the cutting time in zigzag milling operation of two dimensional polygonal surfaces. Previous works have been focused on mainly experimental approaches by considering some machining parameters such as, spindle speed, depth of cut, cutter traverse rate, cutter diameter, number of teeth, tool wear, life of tool, and so on. However, in this study, we considered two geometrical factors one by one in order to see the effect separately, which are the length of cut and the number of cutter traverse. In an N-sided concave or convex polygon, an algorithm has been developed which minimize the total length of cut. Also, a heuristic approach was used to minimize the number of cutter traverse.

  • PDF

금속절삭시 CHIP 생성기구 및 절삭온도 예측을 위한 유한요소해석에 관한 연구

  • 황준;남궁석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.22-27
    • /
    • 1993
  • The finite element method is applied to analyze the mechanism of metal cutting. This paper introduces some effects, such constitutive deformation laws of workpiece material, friction of tool-chip contact interfaces, tool rake angles and also simulate the cutting process, chip formation and geometry, tool-chip contact, reaction force of tool, cutting temperature. Under the usual [lane strain assumption, quasi-static analysis were performed with variation of tool-chip interface friction coefficients and rake angles. In this analysis, various cutting speeds and depth of cut are adopted. Some cutting parameters are affected to cutting force, plastic deformation of chip, shear plane angle, chip thickness and tool-chip contact length and reaction forces on tool. Cutting temperature and Thermal behavior. Several aspects of the metal cutting process predicted by the finite element analysis provide information about tool shape design and optimal cutting conditions.

Machinability evaluation according to variation of tool shape in high speed machining (고속가공에서 공구형상 변화에 따른 가공성평가)

  • 하동근;강명창;김정석;김광호;강호연
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.346-351
    • /
    • 2001
  • The technique of high speed machining is widely studied in machining field. Because the high efficiency and accuracy in machining can be obtained in high speed machining. Unfortunately the development of tool for high speed machining is not close behind that of machining tool. So in this study, we made 4 types flat end mill for obtaining data according to tool shape. Especially, we concentrated in helix angle and number of cutting edge. First we confirmed cutting condition by several experiments and measuring cutting force, tool life, tool wear and chip shape according to cutting length. In results, we acquired the fact that 45 degree helix angle and six cutting edge tool is suitable for high speed machining.

  • PDF

Turning of Hardened Materials Using the Air-oil Cooling System (에어-오일 냉각방식에 의한 고경도재료의 선삭)

  • Chung, Bo Gu;Ko, Tae Jo;Kim, Hee Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.73-81
    • /
    • 1997
  • The hard turning process defined as a single point turning of materials harder than $H_{R}$C 58 differs from conventional turning because of hardness of the work materials and cutting toos needed in the process. In hard turning, tool life is very short, of the order of a few minutes, during which the cutting tool is subjected to the extremes of stress and temperature. In this regard, it is well known that CBN tool is proper for this process in spite of expensive cost. In this research, we studied the feasibility of the use of the low cost cutting tool such as a aTiN coated tool. To this end, a new cooling system was designed with an air-oil method for reducing tool temperature, which is based on the principle of air vortex flow. That is, the outlet temperature of the air becomes aver 20 .deg. C lower than atmosphere temperature by entering pressurized air of 5kgf/c $m^{2}$ into the inlet. This cooled air ejected to the top of the cutting tool lowered tool temperature, which reduced the wear of a TiN coated tool by the 30% of CBN tool life with respect to the same cutting length.h.

  • PDF

Observational Arc-Length Effect on Orbit Determination for KPLO Using a Sequential Estimation Technique

  • Kim, Young-Rok;Song, Young-Joo;Bae, Jonghee;Choi, Seok-Weon
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.295-308
    • /
    • 2018
  • In this study, orbit determination (OD) simulation for the Korea Pathfinder Lunar Orbiter (KPLO) was accomplished for investigation of the observational arc-length effect using a sequential estimation algorithm. A lunar polar orbit located at 100 km altitude and $90^{\circ}$ inclination was mainly considered for the KPLO mission operation phase. For measurement simulation and OD for KPLO, the Analytical Graphics Inc. Systems Tool Kit 11 and Orbit Determination Tool Kit 6 software were utilized. Three deep-space ground stations, including two deep space network (DSN) antennas and the Korea Deep Space Antenna, were configured for the OD simulation. To investigate the arc-length effect on OD, 60-hr, 48-hr, 24-hr, and 12-hr tracking data were prepared. Position uncertainty by error covariance and orbit overlap precision were used for OD performance evaluation. Additionally, orbit prediction (OP) accuracy was also assessed by the position difference between the estimated and true orbits. Finally, we concluded that the 48-hr-based OD strategy is suitable for effective flight dynamics operation of KPLO. This work suggests a useful guideline for the OD strategy of KPLO mission planning and operation during the nominal lunar orbits phase.

Verification of Tool Collision for 3-Axis Milling (3축 밀링 가공의 공구 충돌 검증)

  • Chung, Yun-C.;Park, Jung-W.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.116-121
    • /
    • 2001
  • Verification of tool collision is an important issue in die and mold machining. In this paper three functions of verification are schematically explained based on Z-Map model. The first function is getting a collision-free region when a tool assembly and a part surface model are given. The second function estimates the shortest length of cutter shank with that the tool cuts all of a region without collision. The last one is cutting simulation considering all parts of tool assembly as well as cutter blade. Those functions can be easily implemented by using several basic operators of Z-Map model which are explained also. Proposed approaches have enough accuracy to verify collision in reasonable computing time.

  • PDF

Development of Geometry Design S/W using Analysis on Machining Characterization considering EndMill Geometry (엔드밀 형상에 따른 가공특성 분석을 이용한 형상설계 S/W 개발)

  • 한창규;고성림;유중학;서천석;김경배
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.111-117
    • /
    • 2004
  • The tool geometry parameters and cutting process have complex relationships. Until now, various cutting test were needed to acquire optimal design of end mill for the purpose of high speed machining, due to the insufficient knowledge about cutting process. In high speed machining. Using various tools with different geometry, relationships between tool geometry parameter (rake angle, clearance angle, length of cutter) and cutting process (cutting force, surface accuracy, surface roughness) have been studied. Acquired data can be used to design optimal tool for high speed machining and developed tool geometry design S/W.

  • PDF

Verification of Tool Collision for 3-Axis Milling (3축 밀링 가공의 공구 충돌 검증)

  • Chung, Yun-Chan;Park, Jung-Whan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.35-42
    • /
    • 2002
  • Verification of tool collision Is an important issue in die and mold machining. In this paper three functions of verification for 3-axis milling machining are schematically explained. Operators of geometric models are explained at first, which will be used in the functions of verification. The first verification function is getting a collision-free region when a tool assembly and a part surface model are given. The second function estimates the shortest length of cutter shank with that the tool cuts all of a region without collision The last one is cutting simulation considering all parts of tool assembly as well as cutter blade. Proposed approaches can be easily implemented by using several basic operators of geometric model. An example to calculate collision-free region is presented also.

Turning Characteristics of Fiber-Reinforced Plastics by Coated Tools (코팅공구에 의한 섬유강화 복합재료의 선삭가공 특성)

  • 정용운;김주현
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.3
    • /
    • pp.38-42
    • /
    • 2001
  • In the machining of glass fiber reinforced plastics(GFRP), turning has been often used. But the most of past studies have been interested in the effect of fiber orientation on tool wear. In this study, the effects of fiber contents and cutting speeds on tool wear, cutting force and surface roughness are investigated experimentally. By proper selection of cutting tool, the variables are cutting speed, fiber contents and cutting length with fixed feed rate and depth of cut. The fiber contents have major effects on coated tool wear which observed as abrasive wear type.

  • PDF

A study on the Ultra-precision Inner Cutting of Al-alloy (알루미늄합금의 초정밀 내면절삭)

  • 김우순;강상도;김동현;난바의치
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.362-367
    • /
    • 2003
  • Recentlry, High accuracy and precision are required in various industrial field. To obtain the surface roughness with range from several 10nm to several nm in inner cutting, we need a ultra-precision machine, single diamond tool, cutting condition, and the study of materials. It is very difficult to obtain the mirror surface without new technique. In this paper, Using the new tool holder as well as the ultra precision diamond cutting, we directly processed the inside of an aluminum alloy in order to obtain mirror surface. We have considered the length of tool holder when we design the tool holder. From experimental results, we believe that the new tool holder will improve inner cutting.

  • PDF