• 제목/요약/키워드: Tool edge roughness

검색결과 73건 처리시간 0.024초

평 엔드밀을 이용한 평면가공에서의 가공면 형성기구 (Plane Surface Generation with a Flat End Mill)

  • 류시형;김민태;최덕기;주종남
    • 한국정밀공학회지
    • /
    • 제16권2호통권95호
    • /
    • pp.234-243
    • /
    • 1999
  • Using the geometric and the vector methods, three dimensional surface texture and roughness models in flat end milling are developed. In these models, rear cutting effect on surface generation is considered along with tool run-out and tool setting error including tool tilting and eccentricity between tool center and spindle rotational center. Rear cutting is the secondary cutting of the already machined surface by the trailing cutting edge. The effects of tool geometry and tool deflection on surface roughness are also considered. For representing the surface texture more practically, three dimentional surface topography parameters such as RMS deviaiton, skewness and kurtosis are introduced and used in expressing the surface texture characteristics. Under various cutting conditions, it is confirmed that the developed models predict the real surface profile precisely. These models could contribute to the cutter design and cutting condition selection for the reduction of machining and manual finishing time.

  • PDF

적층구조 복합재료의 절삭면 형상에 관한 연구 (A Study on the Machined Surface Morphology of Laminate Composite)

  • 왕덕현
    • 한국정밀공학회지
    • /
    • 제12권12호
    • /
    • pp.130-138
    • /
    • 1995
  • Machined graphite/epoxy surfaces were studied by using SEM (Scanning Electron Microscopy), surface profilometry and its analysis to determine suitable surface describing parameters for machined unidirectional and multidirectional laminate composite. The surface roughness and profile are found to be highly depdndent on the fiber layup direction and the measurement direction. It was possible to machine 90 .deg. and -45 .deg. plies due to the adjacent plies, which were holding those plies. It was found that the microgeometrical variations in terms of roughness parameters $R_{a}$ without $D_{y}$(Maximum Damage Depth) region and $D_{y}$are better descriptors of the machined laminate composite surface than commonly used roughness parameters $R_{a}$and $R_{max}$ The characteristics of surface profiles in laminate composite are well represented in CPD (Cumulative Probability Distribution) plot and PPD (Percentage Probability Density) plot. Edge-trimmed multidirectional laminate surfaces are Gaussian and random for profiles measured along the tool movement direction, they are periodic and non-Gaussian in the direction perpendicular to the tool movement.t.ent.t.

  • PDF

선삭에서 절삭 속도 제어를 통한 표면 거칠기 향상 (Improvement of Surface Roughness by the Cutting Speed Control for Turning Operation)

  • 최종환
    • 한국기계가공학회지
    • /
    • 제7권2호
    • /
    • pp.23-30
    • /
    • 2008
  • As a basic machining process, turning is a widely used machining process in which a single-point cutting tool removes material from the surface of a rotating material. A common method of evaluating machining performance is to measure the surface roughness. In a turning operation, it is important to select cutting conditions for achieving high cutting performance. As a rule, cutting conditions can be classified into feed rate, depth of cut and insert radius. While cutting process even though cutting conditions are optimized, the average roughness can be deterioration due to wear of the cutting tool edge. In this study, the aim is to maintain the average roughness even though the cutting condition is irregularly changing within the predictable range due to the working environment. First, the surface roughness model influenced by cutting conditions is constructed based on the experimental results in a turning operation, Second, applying the sliding mode control theory to the turning operation model which is composed of the surface roughness model and the motor transfer function, the surface roughness is closed to the desired value. Finally, the effectiveness of this approach is demonstrated through the computer simulation.

  • PDF

A Study on Critical Depth of Cuts in Micro Grooving

  • Son, Seong-Min;Lim, Han-Seok;Paik, In-Hwan;Ahn, Jung-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • 제17권2호
    • /
    • pp.239-245
    • /
    • 2003
  • Ultra precision diamond cutting is a very efficient manufacturing method for optical parts such as HOE, Fresnel lenses, diffraction lenses, and others. During micro cutting, the rake angle is likely to become negative because the tool edge radius is considerably large compared to the sub-micrometer-order depth of cut. Depending on the ratio of the tool edge radius to the depth of cut, different micro-cutting mechanism modes appear. Therefore, the tool edge sharpness is the most important factor which affects the qualities of machined parts. That is why diamond, especially monocrystal diamond which has the sharpest edge among all other materials, is widely used in micro-cutting. The majar issue is regarding the minimum (critical) depth of cut needed to obtain continuous chips during the cutting process. In this paper, the micro machinability near the critical depth of cut is investigated in micro grooving with a diamond tool. The experimental results show the characteristics of micro-cutting in terms of cutting force ratio (Fx/Fy), chip shape, surface roughness, and surface hardening nea. the critical depth of cut.

세라믹 연삭에서 다이아몬드 숫돌 마멸에 관한 연구 (A Study on the Diamond Wheel Wear in Ceramic Grinding)

  • 공재향;유봉환;소의열;이근상;유은이
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.344-348
    • /
    • 2001
  • In this study, experiments were carried out to investigate the characteristics of grinding and wear process of diamond wheel grinding ceramic materials. Normal component of grinding resistance was decreasing while increase of spindle speed. The resistance of vitrified bond wheel was less then that of resinoid bond wheel because of imbedded large holes on the surface of cutting edge. Surface roughness was decreasing while increase of spindle speed. The surface roughness after using vitrified bond wheel was less than that of resinoid bond wheel because of small elastic deformation. After continuous grinding of ceramics, cutting edge ratio of resinoid bond wheel decreases. For the case of vitrified bond wheel, cutting edge ratio does not change.

  • PDF

세라믹재 연삭시 다이아몬드 휠의 수명 판정 (Determination of Diamond Wheel Life in Ceramic Grinding)

  • 임홍섭;유봉환;공재향;김홍원
    • 한국공작기계학회논문집
    • /
    • 제13권1호
    • /
    • pp.16-21
    • /
    • 2004
  • In order to investigate the characteristics of diamond wheel grinding of ceramic materials, grinding resistance, surface roughness of ground surface and image of grinding wheel were acquired using experimental method. Through the experiments, this makes it possible to observe grinding wheel behavior by grinding resistance, surface roughness and cutting edge ratio. In case of $Al_2O_3$, cutting edge ratio is bigger than that of $ZrO_2$ and $Si_3N_4$. That's because $Al_2O_3$ has a characteristic of low fracture toughness and bending stress.

세라믹 연삭에서 다이아몬드 휠의 수명 판정에 관한 연구 (A Study on the Determination of Diamond Wheel Life in Ceramic Grinding)

  • 임홍섭;유봉환;소의열;이근상;사승윤
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.308-313
    • /
    • 2002
  • In order to investigate the characteristics of grinding and diamond wheel grinding ceramic materials, grinding resistance, surface roughness of worked surface and image of grinding wheel were acquired using experimental method. Through the experiments, this makes it possible to observe grinding wheel behavior by grinding resistance, surface roughness and cutting edge ratio. In case of A1$_2$O$_3$, cutting edge ratio is begger than that of ZrO$_2$and Si$_3$N$_4$. That's because A1$_2$O$_3$has a characteristics of low fracture toughness and bending stress.

  • PDF

볼 엔드밀 헬릭스 각에 따른 절삭 특성 (Cutting Characteristics of Ball-end Mill with Different Helix Angle)

  • 조철용;류시형
    • 한국정밀공학회지
    • /
    • 제31권5호
    • /
    • pp.395-401
    • /
    • 2014
  • Development of five axis tool grinding machine and CAD/CAM systems increase tool design flexibility. In this research, investigated are cutting characteristics of ball-end mill with different helix angle. Special WC ball-end mills with $0^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$ helix angles are designed and used in various cutting tests. Machining performance according to helix angle variation is evaluated from cutting forces, surface roughness, tool wear, produced chip shape, and vibration characteristics. The ball-end mill with $10^{\circ}$ helix angle shows the best cutting performance due to appropriate chip load distribution and smooth chip flow. This research can be used for cutting edge geometry optimization and novel design of ball-end mill.

드릴가공에서 강재의 피삭성에 관한 연구 (A Study On the Machinability of Steels by Drilling)

  • 김남훈
    • 한국생산제조학회지
    • /
    • 제5권4호
    • /
    • pp.98-107
    • /
    • 1996
  • In order to predict analytically torque, thrust force, tool life and chip formation in drilling, cutting models for chisel edge with various tool-chip contact length were developed in this type. Also, the experimental tests are run with various pilot holes. The following conclusions were obtained from the analysis. \circled1 It's also found experimentally that thrust force(Fz) decreases as pilot hole diameter increases. \circled2 Surface roughness for material(G) is larger that for material(J). The difference over two materials in roughness value about 0.5$mu extrm{m}$. \circled3 Flank wear of the drill in cutting material of G less than any other kinds of materials(F, G, H, I, J). \circled4 In drilling a deep hole on a workpiece over SM45C either twist drill. The chip was conical helix type at the fist suspensely change the two segment type and than two a long pitch helix style.

  • PDF

세라믹 연삭에서 다이아몬드 휠의 연삭 특성 및 마멸 거동 (Grinding Characteristics and Wear Behavior of Diamond Wheel in Ceramic Grinding)

  • 박병규;문홍현;김성청
    • 한국공작기계학회논문집
    • /
    • 제12권5호
    • /
    • pp.8-14
    • /
    • 2003
  • The characteristics of grinding and wear behavior of diamond wheel for grinding ceramic materials was investigated in this study. In case of $Si_3N_4$, the wear of wheel was large, the finding force was relatively stable and the fluctuation of surface roughness n small. On the other hand in case of $Al_2O_3$ and $ZrO_2$, the wear of wheel and surface roughness were decreasing, the grinding force was increasing. During grinding with vitrified bond wheel, $Si_3N_4$ shows renewal of cutting edge while $Al_2O_3$ and $ZrO_2$ show glazing phenomenon of cutting grains. We have found that it possible to observe the behavior of grinding wheel by grinding ratio, grinding resistance, surface roughness and cutting edge ratio. Through the grinding experiments, it was found that grinding life of diamond wheel is 20 times for $Si_3N_4$, and 40 times fir $Al_2O_3$ and $ZrO_2$.