• Title/Summary/Keyword: Tool edge roughness

Search Result 73, Processing Time 0.021 seconds

평 엔드밀 공구인선부 조도의 간접적인 측정법 (Indirect Method for Measurement of Tool Edge Roughness in flat End Mill)

  • 김전하;강명창;김정석
    • 한국정밀공학회지
    • /
    • 제19권10호
    • /
    • pp.92-98
    • /
    • 2002
  • End mill is an essential tool to generate complex surface in workpiece and it has been developed with various materials and tool shapes. The most important factor to evaluate the performance of end mill is still the wear characteristics of flank face. In addition to the flank wear, the tool edge roughness generated by the chipping is another important factor in aspects of material property and machinability evaluation and affects the quality of machined surface. Up to now, there is no direct method for measurement of tool edge roughness. In this study, the tool edge roughness of flat end mill is indirectly measured along the axial direction of workpiece. The theoretical equation is derived in consideration of tool geometry. Finally, the optimal conditions to measure the tool edge roughness by the proposed method are presented through the theoretical review and experimental identification.

선반작업에서 Ploughing Mechanism을 고려한 표면 거칠기에 관한 연구 (A Study on The Surface Roughness by Ploughing Mechanism in Turning Process)

  • 홍민성
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.251-256
    • /
    • 1999
  • "Ploughing" on the flank face of the tool in the metal cutting process is due to the tool in the metal cutting process is due to the finite edge radius of the tool and due to the development of flank wear. Because of the high stresses near the cutting edge, elastic-plastic deformation would be caused between the tool and the machined surface over a small area of the tool flank. The deformation would affect the roughness of the machined surface. Recently, some attempts have been made to predict the surface roughness, but elastic-plastic effect due to ploughing in the cutting process has not been considered. The research has analyzed mechanism of the ploughing of the cutting process using contact mechanics. Tool and workpiece material properties have been taken into account in the prediction of the surface roughness. The surface roughness has been simulated by the surface-shaping system. The results between experiment and simulation have been compared and analyzed. analyzed.

  • PDF

취성재료의 가공시 절삭날이 표면거칠기에 미치는 영향 (The Effect of Cutting Edge on the Surface Roughness In Cutting Brittle Materials)

  • 김주현
    • 한국정밀공학회지
    • /
    • 제13권1호
    • /
    • pp.53-61
    • /
    • 1996
  • A clear understanding of the surface formation mechanism due to cutting is very important to help produce a good quality surface. Much of the roughness along the length of a bar being cut in a lathe can be explained in terms of macroscopic tool shape and feed rate. However, the roughness along the direction of cutting requires a different explanation. The formation of surface roughness is a problem in flow and fracture of materials in the vicinity of the tool edge. On a microscopic scale the cutting edge is rounded because it is impossible to grind a perfectly sharp cutting edge. Even if a perfectly sharp cutting edge were obtained it would soon become dull as a result of rapid breakdown and wear of the cutting edge. A research project is proposed in which in the main object is to model the surface formation mechanism due to cutting. The tool was assumed to be dull, that is, its edge has a finite radius. In order to study the effect of the radius of cutting edge on the surface formation, tools having different cutting edges were used. For orthogonal cutting experiment, cast iron and glass were chosen as brittle materials. Plowing forces acting in the cutting edge were estimated and its effect on the surface roughness was studied by observing the machined surface using optical microscope.

  • PDF

천연 다이아몬드 인선형태에 의한 Al 합금의 경면절삭에 관한 연구 (Study on mirror-like surface machining of Al alloy with edge form of single crystal diamond tools)

  • 김정두
    • 대한기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.1515-1522
    • /
    • 1990
  • 본 연구에서는 천연다이아몬드의 인선형상을 R형과 S형으로 구분하여 제작하 고 미세이송과 절삭속도 변화를 주어 이에 얻어지는 표현거칠기, 칩 생성기구 및 경면 성을 검토하였다.

고속가공의 상태 감시를 위한 실험적 평가 기술 (Experimental evaluation technique for condition monitoring of high speed machining)

  • 김전하;강명창;김정석;김기태
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.84-87
    • /
    • 2001
  • The high speed machining which cam improve the production and quality has been remarkable in die/mold industry with the growth of parts and materials industries. The speed of machine tool increases, but on the other hand, the response of sensors I not being improved. Therefore, the condition monitoring techniques for the machine too, tool and workpiece in high speed machining are incomplete. In this study, characteristics of the tool edge roughness were verified from the high frequency components of cutting force signals acquired by the high speed dynamometer. Also, the experimental evaluation technique for the machinability and condition monitoring in high speed machining was established by analyzing the cutting force, acceleration and surface roughness.

  • PDF

절인반경차이에 따른 연질재료의 정밀가공 특성 연구 (A Study on the Precision Cutting Characteristics for Different Cutting Edge Radii in Ductile Material)

  • 권용기
    • 한국생산제조학회지
    • /
    • 제9권1호
    • /
    • pp.75-80
    • /
    • 2000
  • This paper deals with the precision cutting characteristics of mono-crystal diamonds poly-crystal diamonds and tungsten carbide tool on ductile material. The cutting tests were carried out under various uncut chip areas and 20${\mu}{\textrm}{m}$ depth of engagement. The machinability in precision machining was discussed from the viewpoints of the normal cutting forces and the surface roughness of the workpiece. As the feed rate decreases the normal force difference for cutting edge radii appears to large. In various cutting edge radii the surface roughness difference when cut the copper which is ductile material than the aluminium alloy is large. As the same cutting condition the hardness value on cut surface with the diamond tool appears to be smaller than that of the tungsten carbide tool.

  • PDF

Diamond 공구에 의한 aluminium 합금의 초정밀 절삭가공에 관한 연구 (A Study on the Ultraprecision Cutting of Aluminium Alloy by the Diamond Tool)

  • 유기현;문상돈;유종선;김태영;서남섭
    • 한국정밀공학회지
    • /
    • 제13권1호
    • /
    • pp.78-83
    • /
    • 1996
  • This paper presents the characteristics of surface roughness and cutting force in ultraprecision cutting of aluminium alloy using natural diamond tools whose edge radii are smaller than those of tools made of other materials. The feed rate and depth of engagement were set to be a micrometer order. After measuring the surface roughness of machined surface and cutting force for each cutting condition, the relations between the surface quality and its condition were investigated qualitatively. If the feed rate was under a certain limit, the machined surface quality was deteriorated unexpectedly. This is supposed to have happened due to vibration leading its condition to abnormal one. In a certain situation the machined surface roughness by a natural diamond tool was inferior to that made by a carbide tool whose cutting edge radius is larger. This is supposed to be caused by not normal machining but burnishing effect.

  • PDF

직선날 다이아몬드 공구에 의한 Al합금의 정밀가공 특성 연구 (A Study on the Precision Cutting Characteristics of Al-alloy by the Diamond Tool with the Straight Cutting Edge)

  • Yu, K.H.;Cheong, C.Y.;Seo, N.S.
    • 한국정밀공학회지
    • /
    • 제14권2호
    • /
    • pp.113-119
    • /
    • 1997
  • This research intents to gain the sight for the qualitative characteristics of precision cutting by using the CNC lathe with a mono-crystal diamond(MCD) tool having a straight cutting edge. As an absolute value of tool setting angle becomes smaller, the surface roughness has improved. We knew that according to each of the machine tools and cutting edge radius, there exist a proper mininum feed and depth of engagement for improving the surface roughness. This results suggest that the proper values of feed and depth of engagement are about 11-15 .mu. m/rev, 10 .mu. m, respectively.

  • PDF

Insert type 총형공구 여유각 영향에 따른 베어링 Rubber Seal 금형의 가공성 평가 (A Study on Machining for Bearing Rubber Seal Die by Flank of Formed Insert Type Tool)

  • ;김연술;김도형;양균의;문상돈
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.42-47
    • /
    • 2004
  • Formed insert type tool satisfy both the surface roughness and geometric accuracy, so that cutting edge of formed tool can duplicate final feature. For experiment the formed tools with various clearance angles are machined. And the tools are evaluated with respect cutting force, flank rear and surface roughness to optimistic condition.

  • PDF

다구찌 방법을 통한 볼 엔드밀 절삭날 형상이 가공면 거칠기에 미치는 영향 분석 (Analysis of Cutting Edge Geometry Effect on Surface Roughness in Ball-end Milling Using the Taguchi Method)

  • 조철용;류시형
    • 한국생산제조학회지
    • /
    • 제23권6호
    • /
    • pp.569-575
    • /
    • 2014
  • In this study, the effect of cutting edge geometry, such as helix and rake angles, on surface roughness in ball-end milling is investigated by using the Taguchi method. A set of experiments adopting the $L_{27}(3^{13})$ design with an orthogonal array are conducted with special WC ball-end mills having different helix and rake angles. Analysis of variance (ANOVA) is performed to analyze the effects of tool geometry and machining parameters, such as cutting speed, feed per tooth, and depth of cut, on surface roughness. The ANOVA results reveal that helix and rake angles are critical factors affecting surface roughness; the interaction of helix angle and cutting speed is also important. This research can contribute to novel cutting edge designs of ball-end mills and optimization of cutting parameters.