• Title/Summary/Keyword: Tool State Monitoring

Search Result 111, Processing Time 0.032 seconds

Monitoring System for Abnormal Cutting States in the Drilling Operation using Motor Current (모터전류를 이용한 드릴가공에서의 절삭이상상태 감시 시스템)

  • Kim, H.Y.;Ahn, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.98-107
    • /
    • 1995
  • The in-process detection of drill wear and breakage is one of the most importnat technical problems in unmaned machining system. In this paper, the monitoring system is developed to monitor abnormal drilling states such as drill breakage, drill wear and unstable cutting using motor current. Drill breakage is detected by level monitoring. Tool wear is classified by fuzzy pattern recognition. The key feature for classification of tool wear is the estimated flank wear which is calculated by the proposed flank wear model. The characteristic of the model is not sensitive to the variation of cutting conditions but is sensitive to drill wear state. Unstable cutting states due to the unsmooth chip disposal and the overload are monitored by the variance/mean ratio of spindle motor current. Variance/mean ratio also includes the information about the prediction of drill wear and drill breakage. The evaluation experiments have shown that the developed system works very well.

  • PDF

A Study on Cutting Toll Damage Detection using Neural Network and Cutting Force Signal (신경망과 절삭력을 이용한 공구이상상태감지에 관한 연구.)

  • 임근영;문상돈;김성일;김태영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.982-986
    • /
    • 1997
  • A method using cutting force signal and neural network for detection tool damage is proposed. Cutting force signal is gained by tool dynamometer and the signal is prepocessed to normalize. Cutting force signal is changed by tool state. When tool damage is occurred, cutting force signal goes up in comparison with that in normal state. However,the signal goes down in case of catastrophic fracture. These features are memorized in neural network through nomalizing couse. A new nomalizing method is introduced in this paper. Fist, cutting forces are sumed up except data smaller than threshold value, which is the cutting force during non-cutting action. After then, the average value is found by dividing by the number of data. With backpropagation training process, the neural network memorizes the feature difference of cutting force signal between with and without tool damage. As a result, the cutting force can be used in monitoring the condition of cutting tool and neural network can be used to classify the cutting force signal with and without tool damage.

  • PDF

Intraoperative Transcranial Doppler Monitoring (수술중 경두개 초음파 집중감시)

  • Seo, Dae Won
    • Annals of Clinical Neurophysiology
    • /
    • v.1 no.1
    • /
    • pp.70-75
    • /
    • 1999
  • Trancranial Doppler(TCD) monitoring is a new application of ultrasonography which allows the nonivasive detection of blood flow velocity in the horizontal (M1) segment of the middle cerebral artery (MCA) and detects microembolic phenomena in the cerebral circulation. Recent studies emphasized the potential of using this technique in vascular surgery (carotid endarterectomy, cardiopulmonary bypass), interventional and intensive care setting. Although the disparity between CBF and blood flow velocity and number of microemboli could be used to prevent cerebral ischemic and embolism based on clinical studies. A reduction of more than 60% of MCA can reflex hemodynamic ischemic state and acoustic feedback of high intensity transient signals(HITS) from the TCD monitoring unit has a direct influence on surgical technique. TCD monitoring can immediately provide information about thromboembolism and hemodynamic changes, which may be a useful tool in the study and prevention of stroke.

  • PDF

The Prediction of Tool Wear by Cutting Force Model in the Machining of Die Material (금형강 가공에서 절삭력 모델에 의한 공구마멸의 예측)

  • 조재성;강명창;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.61-66
    • /
    • 1994
  • Tool condition monitoring is one of the most important aspects to improve productivity and quality and to achieve intelligent machining system. The tool state is classified into three groups as chipping, wear and fracture. In this study, wear of a ceramic cutting tool for hardened die material (SKD11) was investigated. Flank wear was occured more dominant than crarer wear. Therefore, to predict flank wear, the modeling of cutting force has been performed. The modeling of cutting force by an assumption that act the stress distribution on the tool face obtained through a numerical analysis. The relationships between the cutting force and the tool wear can be constructed by machining paraneters with cutting conditions. Experiments were performed under the various cutting conditions to ensure the validity of force models. The theoretical predictions of the flank wear is approximately in good agreement with experimental result.

  • PDF

A Cylindrical Spindle Displacement Sensor and its Application on High Speed Milling Machine (원통형 주축 변위 센서를 이용한 고속 밀링 가공 상태 감시)

  • Kim, Il-Hae;Jang, Dong-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.108-114
    • /
    • 2007
  • A new cutting force estimating approach and machining state monitoring examples are presented which uses a cylindrical displacement sensor built into the spindle. To identify the tool-spindle system dynamics with frequency up to 2 kHz, a home-built electro-magnetic exciter is used. The result is used to build an algorithm to extract the dynamic cutting force signal from the spindle error motion; because the built-in spindle sensor signal contains both spindle-tool dynamics and tool-workpiece interactions. This sensor is very sensitive and can measure broadband signal without affecting the system dynamics. The main characteristic is that it is designed so that the measurement is irrelevant to the geometric errors by covering the entire circumferential area between the target and sensor. It is also very simple to be installed. Usually the spindle front cover part is copied and replaced with a new one with this sensor added. It gives valuable information about the operating condition of the spindle at any time. It can be used to monitor cutting force and chatter vibration, to predict roughness and to compensate the form error by overriding spindle speed or feed rate. This approach is particularly useful in monitoring a high speed machining process.

Diagnosis of Cutting Stability of Portable Automatic Beveling Machine Using Spindle Motor Current (주축 모터를 이용한 포터블 자동 면취기의 가공 안정성 진단)

  • Kim, Tae Young;An, Byeong Hun;Kim, Hwa Young
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.57-63
    • /
    • 2022
  • This study describes a system that monitors the tool and cutting state of automatic beveling operation in real time. As a signal for cutting state monitoring, a motor current detected from the spindle drive system of the automatic beveling machine is used to monitor abnormal state. Because automatic beveling is processed using a face milling cutter, the cutting force mechanism is the same as the milling process. The predicted cutting torque is obtained using a cutting force model based on specific cutting resistance. Then, the predicted cutting torque is converted into the spindle motor current value, and cutting state stability is diagnosed by comparing it with the motor current value detected during beveling operation. The experimental results show that the spindle motor current can detect abnormal cutting state such as overload and tool wear during beveling operation, and can diagnose the cutting stability using the proposed equip-current line diagram.

Development of Fiber Optic Sensor for Monitoring Magnetic Bearing (자기베어링 모니터링용 광파이버센서 개발에 관한 연구)

  • 홍준희;한복수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.65-71
    • /
    • 2003
  • In a high speed spindle system it is very important to monitor the state of rotating rotor. Particularly in active control spindle system the position sensor must provide feedback to the control system on the exact position of the rotor. In order to monitor the state of a high speed spindle exactly, high accuracy and wide frequency bandwidth of sensors are important. The focus in this paper is to make a fiber optic sensor for monitoring rotor of magnetic bearing, to design the circuit for detecting optical signal, and to evaluation static and dynamic characteristics of fiber optic sensor.

Design and Performance Evaluation of the Optical Fiber Position Sensor for the State Monitoring of a High Speed Spindle (고속 주축 상태 모니터링용 광파이버 변위 센서 설계 제작 및 성능평가)

  • 홍준희;박찬규;신우철;이동주
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.393-398
    • /
    • 2004
  • This paper is focused on practical applicability of the optical fiber sensor considering the machine center which is going to use them. Optical fibers may be fluctuated because the machine center operates as column moving type. This causes distortion of the sensor output signal. To reduce this problem, we have improved the sensor structure and its bracket. And we evaluated performances of the sensor.

  • PDF

The Performance Evaluation of Fiber Optic Sensor for Monitoring Magnetic Bearing (자기베어링 모니터링용 광파이버센서의 성능 평가)

  • 박한수;정택구;홍준희;이동주
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.411-416
    • /
    • 2002
  • In a high speed spindle system, it is very important to monitor the state of rotating rotor. Particularly in active control spindle system, the position sensor must provide feedback to the control system on the exact position of the rotor. In order to monitor the state of a high speed spindle exactly, high accuracy and wide frequency bandwidth of sensors are important. The focus in this paper is to make a fiber optic sensor for monitoring rotor of magnetic bearing, to design the circuit for detecting optical signal, and to evaluation static and dynamic characteristics of fiber optic sensor.

  • PDF

Monitoring and Analysis on Die Loads in Multi-stage Cold Forging Process Using Piezo-Sensors (금형블록에 장착된 압조센서를 활용한 다단 냉간단조 공정의 모니터링 및 분석)

  • Kang, S.M.;Kang, K.J.;Yeom, S.R.;Lee, K.H.;Kim, J.Y.
    • Transactions of Materials Processing
    • /
    • v.31 no.1
    • /
    • pp.5-10
    • /
    • 2022
  • In multi-stage cold forging process, to enhance the productivity and product quality, in-site process monitoring technique by implanting sensors such as piezo-sensor and acoustic emission sensor has been continuously studied. For accurate analysis of the process, the selection of appropriate sensors and implantation positions are very important. Until now, in a multi-state forging machine, wedge parts located at the end of punch-set are used but it is difficult to analyze minute changes in die block-set. In this study, we also implanted sensors to the die part (die spacer) and compared signals from both sensors and found that sensing signals from die part showed enhanced process monitoring results.