• Title/Summary/Keyword: Tool Paths

Search Result 170, Processing Time 0.03 seconds

Gouging-free Tool-path Generation for Manufacturing Model Propellers (모형 프로펠러 제작을 위한 과절삭이 없는 공구 경로 생성)

  • Kim, Yoo-Chul;Kim, Tae-Wan;Suh, Jung-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.198-209
    • /
    • 2007
  • In this paper, we present the gouging and collision-free tool-path generation for manufacturing model propellers using the 5-axis NC machine. Because it takes much time to generate tool-paths when we use general purpose CAD/CAM systems, a specific system would be necessary for marine propellers. Overall manufacturing process is composed of two steps: roughcut and finishcut steps. The roughcut is conducted using only 3-axis for efficient machining and the finishcut is done using 5-axis for avoiding collision. The tool-path that might happen to gouging is searched and the tool position is also decided for avoiding interference between the tool and the propeller blades. The present algorithm is applied extensively to the surface piercing propellers. Some results are demonstrated for its validation.

Deformation Characteristics of an Automotive Outer Door Panel by Vacuum-assisted Incremental Sheet Forming using Multi-tool paths (진공점진성형에서 복합공구경로가 차량용 외판부 도어패널의 변형특성에 미치는 영향 분석)

  • H.W. Youn;N. Park
    • Transactions of Materials Processing
    • /
    • v.32 no.4
    • /
    • pp.208-214
    • /
    • 2023
  • This paper discusses the deformation characteristics of a scaled-down automotive outer door panel with vacuum-assisted incremental sheet forming. The vacuum condition between the die and Al6052-H32 sheet with a thickness of 1.0 mm is reviewed with the goal of improving the geometrical accuracy of the target product. The material flow according to the forming tool path, including the multi-tool path and conventional contour tool path, is investigated considering the degradation of the pillow effect. To reduce friction between the tool and the sheet during incremental forming, automotive engine oil (5W-30) is used as a lubricant, and the strain field on the surface of the formed product is analyzed using ARGUS. By comparing the geometry and material flow characteristics of products under different test conditions, it is confirmed that the product surface quality can be significantly improved when the vacuum condition is employed in conjunction with a multi-tool path strategy.

Performance Assessment and Contouring Error Prediction of High Speed HMC (고속 HMC 이송계의 운동특성 평가 및 운동오차 예측)

  • 최헌종;허남환;강은구;이석우;홍원표
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.375-381
    • /
    • 2004
  • Recently, the evolution in production techniques (e.g. high-speed milling) and the complex shapes involved in modem production design has been increasingly popular. The key to the achievement is a drastic improvement of the dynamic behavior of the machine tool axes used in production machinery. The more complex these tool paths the higher the speed and acceleration requirements. But it is very difficult to reach the target for high speed machine tool because of the limitations of servo system and motion control system. However the direct drive design of machine tool axes, which is based on linear motors and which recently appeared on the market, is a viable candidate to meet the ever increasing demands, because of these advantages such as no backlash, less friction, more mechanical simplicity and very higher acceleration and velocity comparing to the traditional system. This paper focused on the performance tests of the high speed horizontal machine tool based on linear motor. Especially, dynamic characteristics were investigated through circular test and circular form machining test is carried out considering many important parameter. Therefore these several experiments is used to be evaluated the model for prediction of circular motion error and circular machined error.

  • PDF

Real-Time Tool-Path Generation for 3-Axis CNC Machining of NURBS Surfaces (NURBS 곡면의 3축 CNC 가공을 위한 실시간 공구경로 생성)

  • Koo, Tae-Hoon;Jee, Sung-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1418-1425
    • /
    • 2003
  • In CAD systems, a surface to be machined is expressed by a series of curves, such as B-spline, Bezier and NURBS curves, which compose the surface and then in CAM systems the curves are divided into a large number of line or arc segments. These divided movement commands, however, cause many problems including their excessive size of NC data that makes almost impossible local adjustment or modification of the surface. To cope with those problems, the necessity of real-time curve or surface interpolators was embossed. This paper presents an efficient real-time tool-path generation method fur interpolation of NURBS surfaces in CNC machining. The proposed tool-path generation method is based on an improved iso-scallop strategy and can provide better precision than the existing methods. The proposed method is designed such that tool-path planning is easily managed in real-time. It proposed a new algorithm for regulation of a scallop height, which can efficiently generate tool-paths and can save machining time compared with the existing method. Through computer simulations, the performance of the proposed method is analyzed and compared with the existing method in terms of federate, total machining time and a degree of constraint on the scallop height.

A five-axis CAM system for free-surface grinding (금형연마작업을 위한 5축 CAM 시스템)

  • 서석환;이민석;김두형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1024-1030
    • /
    • 1993
  • In manufacturing press die with free surface, grinding operation is an important post process for surface finish and dimensional accuracy. With the advancement of NC technology. surface grinding operation is increasingly replaced by the gantry type manipulator. As the mechanics for grinding operation is different from machining operation, conventional CAM system for machining operation is hard to apply. In this. paper, we develop a five-axis CAM system by which an efficient gantry trajectory can be planned and verified. The developed system consists of four conceptual modules; namely CAD, PROCESS. CAM, and ANALYSIS. In the CAD module, the machined surface is represented by CL-data or surface modeler, and process parameters are specified by the PROCESS module. Then, the CAM module generates a series of grinding paths based on the grinding mechanics together with process databases for tool spaces and grinding conditions. The generated paths are verified via ANALYSIS module. Validation via real experiments is left for further study.

  • PDF

A New Stress Path Testing Scheme To Estimate Clay Deformation Characteristics (점성토의 변형특성 평가를 위한 새로운 응력경로시험기법)

  • 최영태;김창엽;정충기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.303-310
    • /
    • 2000
  • A new stress path testing scheme with back pressure equalization process is proposed, to compute the settlement of clay soils based on their probable deformation mode. The proposed testing scheme minimizes the efforts for testing, otherwise numerous testing works are required to simulate the probable stress paths in the field. Furthermore, the proposed testing scheme can supply anisotropic stress paths for consolidation which cannot be possible in a conventional way. The validity and effectiveness of the proposed testing scheme was investigated and confirmed with test results on remolded kaolinite clay soils. Conclusively, it is suggested that the proposed testing scheme is a very effective tool to compute settlement of clay soils and it is also very useful to investigate the anisotropic characteristics of deformation of clay soils.

  • PDF

A practice on performance testing for web-based systems Hyperlink testing for web-based system

  • Chang, Wen-Kui;Ron, Shing-Kai
    • International Journal of Quality Innovation
    • /
    • v.1 no.1
    • /
    • pp.64-74
    • /
    • 2000
  • This paper investigates the issue of performance testing on web browsing environments. Among the typical non-functional characteristics, index of link validity will be deeply explored. A framework to certify link correctness in web site is proposed. All possible navigation paths are first formulated to represent a usage model with the Markov chain property, which is then used to generate test script file statistically. With collecting any existing failure information followed by tracing these testing browsed paths, certification analysis may be performed by applying Markov chain theory. The certification result will yield some significant information such as: test coverage, reliability measure, confidence interval, etc. The proposed mechanism may provide not only completed but also systemic methodologies to find any linking errors and other web technologies errors. Besides, an actual practice of the proposed approach to a web-based system will be demonstrated quantitatively through a certification tool.

  • PDF

Optimal Underwater Coverage of a Cellular Region by Autonomous Underwater Vehicle Using Line Sweep Motion

  • Choi, Myoung-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.1023-1033
    • /
    • 2012
  • An underwater planar covering problem is studied where the coverage region consists of polygonal cells, and line sweep motion is used for coverage. In many subsea applications, sidescan sonar has become a common tool, and the sidescan sonar data is meaningful only when the sonar is moving in a straight line. This work studies the optimal line sweep coverage where the sweep paths of the cells consist of straight lines and no turn is allowed inside the cell. An optimal line sweep coverage solution is presented when the line sweep path is parallel to an edge of the cell boundary. The total time to complete the coverage task is minimized. A unique contribution of this work is that the optimal sequence of cell visits is computed in addition to the optimal line sweep paths and the optimal cell decomposition.

Study on the Performance Comparision of Software Pulse Interpolators (소프트웨어 펄스 보간기의 성능비교)

  • Ahn, J.H.;Lim, H.S.;Lee, W.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.62-69
    • /
    • 1996
  • Interpolator is a very important element in NC machines in that it controls tool path and speed. In this paper, studied were extensive interpolation characteristics of reference pulse method among various interpolation and pulse generation methods. Specifically, processing speed and path error of DDA, SPD and SFG methods were compared and analyzed against line, circle and elipse. As a result, in the point of processing speed, SPD method was found to be the best for line interpolation, SFG method for circle and ellipse, and DDA method was found to be the slowest for all paths. In the point of path error, DDA method was found to have the biggest error for all kinds of paths.

  • PDF

Prediction of Machine Tool's Energy Consumption during the Cutting Process (공작기계의 절삭공정 소비 에너지 예측기술)

  • Lee, Chan-Hong;Hwang, Jooho;Heo, Segon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.4
    • /
    • pp.329-337
    • /
    • 2015
  • In this paper, a simulation based estimation method of energy consumption of the spindle and feed drives for the NC machine tool during the cutting process is proposed. To predict energy consumption of the feed drive system, position, velocity, acceleration and jerk of the table are analyzed based on NC data and then the power and energy are calculated considering friction force and mass of the stages. Energy consumption of the spindle is estimated based on models from acceleration motion of rotating parts, friction torque and power loss of motors. Moreover, simulation models of cutting power and energy for the material removal along the NC tool paths are proposed.