• Title/Summary/Keyword: Tool Paths

Search Result 170, Processing Time 0.026 seconds

Analysis of Harmonic Mean Distance Calculation in Global Illumination Algorithms (전역 조명 알고리즘에서의 조화 평균 거리 계산의 분석)

  • Cha, Deuk-Hyun;Ihm, In-Sung
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.2
    • /
    • pp.186-200
    • /
    • 2010
  • In order to render global illumination realistically, we need to accurately compute the direct and indirect illumination that represents the light information incoming through complex light paths. In this process, the indirect illumination at given point is greatly affected by surrounding geometries. Harmonic mean distance is a mathematical tool which is often used as a metric indicating the distance from a surface point to its visible objects in 3D space, and plays a key role in such advanced global illumination algorithms as irradiance/radiance caching and ambient occlusion. In this paper, we analyze the accuracy of harmonic mean distance estimated against various environments in the final gathering and photon mapping methods. Based on the experimental results, we discuss our experiences and future directions that may help develop an effective harmonic mean distance computation method in the future.

Comparison of Path Exploration and Model Checking Techniques for Checking Automotive API Call Safety (차량전장용 소프트웨어의 API 제약사항 위배여부 탐지를 위한 실행경로 탐색방법과 모델검증 방법의 비교)

  • Kim, Dongwoo;Choi, Yunja
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.12
    • /
    • pp.615-622
    • /
    • 2016
  • Automotive control software can be a source of critical safety issues when developers do not comply system constraints. However, a violation is difficult to identify in complicated source code if not supported by an automated verification tool. This paper introduces two possible approaches that check whether an automotive control software complies API call constraints to compare their performance and effectiveness. One method statically analyzes the source code and explores all possible execution paths, and the other utilizes a model checker to monitor constraint violations for a given set of constraint automata. We have implemented both approaches and performed a series of experiments showing that the approach with model-checking finds constraint violations more accurately and scales better.

Trimming Line Design using Incremental Development Method and Finite Element Inverse Method (점진 전개기법 및 유한요소 역해석법을 이용한 자동차 패널 트리밍 라인 설계)

  • Chung, W.J.;Park, C.D.;Song, Y.J.;Oh, S.W.
    • Transactions of Materials Processing
    • /
    • v.15 no.6 s.87
    • /
    • pp.445-452
    • /
    • 2006
  • In most of automobile body panel manufacturing, trimming process is generally performed before flanging. To find feasible trimming line is crucial in obtaining accurate edge profile after flanging. Section-based method develops blank along manually chosen section planes and find trimming line by generating loop of end points. This method suffers from inaccurate results of edge profile. On the other hand, simulation-based method can produce more accurate trimming line by iterative strategy. In this study, new fast simulation-based method to find feasible trimming line is proposed. Finite element inverse method is used to analyze the flanging process because final shape after flanging can be explicitly defined and most of strain paths are simple in flanging. In utilizing finite element inverse method, the main obstacle is the initial guess generation for general mesh. Robust initial guess generation method is developed to handle genera] mesh with very different size and undercut. The new method develops final triangular mesh incrementally onto the drawing tool surface. Also in order to remedy mesh distortion during development, energy minimization technique is utilized. Trimming line is extracted from the outer boundary after finite element inverse method simulation. This method has many advantages since trimming line can be obtained in the early design stage. The developed method is verified by shrink/stretch flange forming and successfully applied to the complex industrial applications such as door outer flanging process.

Preliminary Structural Form Planning for Suspension Bridge According to Force Flow (힘의 흐름을 따르는 현수교의 초기 구조형태계획)

  • Kim, Namhee;Koh, Hyun-Moo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1315-1326
    • /
    • 2013
  • Geometric form of a suspension bridge that uses load-sensitive cables takes on not only resisting loads but also becoming a visually sensible shillouette. This study has proposed a preliminary structural form planning for a suspension bridge following force flow by adopting the two possibilities of the graphic statics. First, the force polygon allows alternative load paths for the same loading condition. Second, a new structural form for the newly developed load path can be constructed using the reciprocal principle that exits between a structure space and the corresponding force polygon. Major structural form parameters that affect both structural and aesthetic aspecs are first identified. The relationships between structural forms and the corresponding force polygons are then investigated for the identified parameters. Upon the investigation, a stepwise process is developed for a preliminary structural form planning for a suspension bridge. The proposed structural form planning method is general that can be easily expanded to generate design alternatives of similar form-active structural systems. It is also expected that this method will be used as an educational tool to explain the interrelationships between structural forms and their force flows.

The Automatic Design of Optimal Systolic Arrays (최적 시스토릭 어레이의 자동설계)

  • Seong, Ki-Taek;Shin, Dong-Suk;Lee, Deok-Su
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.3
    • /
    • pp.295-302
    • /
    • 1990
  • In this paper, a methodology for the automatic design of the optimal systolic arrays is proposed. Algorithm transformation is the main mathematical tool on which this methodology is based. Also, technique for partitioning algorithm into systolic arrays is presented. Algorithm partitioning is essential when the size of the computational problem is larger than the size of the array. This study results in (a) reduction of the design time of systolic arrays for given algorithms, (b) CRT display of the structures of systolic arrays, and (c) automatic designing of the optimal systolic array by the criteria such as the number of processing elements, bands, and communication paths. The procedure for these results was programmed using HP BASIC language on HP-9836 computer.

  • PDF

Development of A News Event Reenactment System (사건재연 시스템 개발)

  • 윤여천;변혜원;전성규;박창섭
    • Journal of Broadcast Engineering
    • /
    • v.7 no.1
    • /
    • pp.21-27
    • /
    • 2002
  • This paper presents a mews event reenactment system (NERS), which generates virtual character animations in a quick and convenient manner. Thus, NERS can be used to produce computer graphics(CG) scenes of news events that are hard to photograph, such as fire, traffic accident, cases of murder, and so on. By using plenty of captured motion data and CG model data this system produces an appropriate animation of virtual characters straightforwardly without any motion capturing device and actors in the authoring stage. NERS is designed to be capable of making virtual characters move along user-defined paths, stitching motions smoothly and modifyingthe positions and of the articulations of a virtual character in a specific frame. Therefore a virtual character can be controlled precisely so as to interact with the virtual environments and other characters. NERS provides both an interactive and script-based (MEL: Maya Embedded Language) interface so that user can this system in a convenient way. This system has been implemented as a plug-in of commercial CG tool, Maya (Alias/wavefront), in order to make use of its advanced functions

A Control Path Analysis Mechanism for Workflow Mining (워크플로우 마이닝을 위한 제어 경로 분석 메커니즘)

  • Min Jun-Ki;Kim Kwang-Hoon;Chung Jung-Su
    • Journal of Internet Computing and Services
    • /
    • v.7 no.1
    • /
    • pp.91-99
    • /
    • 2006
  • This paper proposes a control path analysis mechanism to be used in the workflow mining framework maximizing the workflow traceability and re discoverability by analyzing the total sequences of the control path perspective of a workflow model and by rediscovering their runtime enactment history from the workflow log information. The mechanism has two components One is to generate the total sequences of the control paths from a workflow mode by transforming it to a control path decision tree, and the other is to rediscover the runtime enactment history of each control path out of the total sequences from the corresponding workflow's execution logs. Eventually, these rediscovered knowledge and execution history of a workflow model make up a control path oriented intelligence of the workflow model. which ought to be an essential ingredient for maintaining and reengineering the qualify of the workflow model. Based upon the workflow intelligence, it is possible for the workflow model to be gradually refined and finally maximize its qualify by repeatedly redesigning and reengineering during its whole life long time period.

  • PDF

An Efficient Method for Estimating Optimal Path of Secondary Variable Calculation on CFD Applications (전산유체역학 응용에서의 효율적인 최적 2차 변수 계산 경로 추정 기법)

  • Lee, Joong-Youn;Kim, Min Ah;Hur, Youngju
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.12
    • /
    • pp.1-9
    • /
    • 2016
  • Computational Fluid Dynamics(CFD) is a branch of fluid mechanics that solves partial differential equations which represent fluid flows by a set of algebraic equations using computers. Even though it requires multifarious variables, only selected ones are stored because of the lack of storage capacity. It causes the requirement of secondary variable calculations at analyzing time. In this paper, we suggest an efficient method to estimate optimal calculation paths for secondary variables. First, we suggest a converting technique from a dependency graph to a ordinary directed graph. We also suggest a technique to find the shortest path from any initial variables to target variables. We applied our method to a tool for data analysis and visualization to evaluate the efficiency of the proposed method.

Simulation of Groundwater Flow in Fractured Porous Media using a Discrete Fracture Model (불연속 파쇄모델을 이용한 파쇄 매질에서의 지하수 유동 시뮬레이션)

  • Park, Yu-Chul;Lee, Kang-Kun
    • Economic and Environmental Geology
    • /
    • v.28 no.5
    • /
    • pp.503-512
    • /
    • 1995
  • Groundwater flow in fracture networks is simulated using a discrete fracture (DF) model which assume that groundwater flows only through the fracture network. This assumption is available if the permeability of rock matrix is very low. It is almost impossible to describe fracture networks perfectly, so a stochastic approach is used. The stochastic approach assumes that the characteristic parameters in fracture network have special distribution patterns. The stochastic model generates fracture networks with some characteristic parameters. The finite element method is used to compute fracture flows. One-dimensional line element is the element type of the finite elements. The simulation results are shown by dominant flow paths in the fracture network. The dominant flow path can be found from the simulated groundwater flow field. The model developed in this study provides the tool to estimate the influences of characteristic parameters on groundwater flow in fracture networks. The influences of some characteristic parameters on the frcture flow are estimated by the Monte Carlo simulation based on 30 realizations.

  • PDF

Development of Feature-based Encapsulation Process using Filler Material (충진재를 이용한 특징형상 가공용 RFPE 공정 개발)

  • Choe, Du-Seon;Lee, Su-Hong;Sin, Bo-Seong;Yun, Gyeong-Gu;Hwang, Gyeong-Hyeon;Lee, Ho-Yeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.98-103
    • /
    • 2001
  • Machining is the commonly used process in the manufacturing of prototypes. This process offers several advantages, such as rigidity of the machine, precision of the machine, precision of the operation and specially a quick delivery. The weight and immobility of the machine support and immobilize the part during the operation. However, despite these advantages it shows, machining still presents several limitations. The immobilization, location and support of the part are referred to as fixturing or workholding and present the biggest challenge for time efficient machining. So it is important to select and design the appropriate fixturing assembly. This assembly depends on the complexity of the part and the tool paths and may require the construction of dedicated fixtures. With traditional techniques, the range of fixturable shapes is limited and the identification of suitable fixtures in a given setup involves complex reasoning. To solve this limitation and to apply the automation, this paper presents the Reference Free Part Encapsulation(RFPE) and implementation of the encapsulation system. The feature-based modeling system and the encapsulation system are implemented. The small part of which it is difficult to find out the appropriate fixturing assembly is made by this system.

  • PDF