• Title/Summary/Keyword: Tool Orientation Accuracy

Search Result 23, Processing Time 0.026 seconds

Error Analysis for a Cubic Parallel Device Moving at Uniform Velocity (등속 운동을 하는 육면형 병렬기구의 오차 해석)

  • 임승룡;최우천;송재복;홍대희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.211-214
    • /
    • 2000
  • An error analysis is very important for a precision machine tool to estimate its performance. This study proposes a new parallel device, a cubic parallel manipulator. Errors of the proposed cubic parallel manipulator include universal joint errors, errors occurring due to changes in the fore directions in the links, and actuation errors. An error analysis is performed for the manipulator platform moving at uniform velocity. The analysis shows how the position and orientation of the platform influences the directional link forces that change the errors in the manipulator. The analysis shows that the method can be used in predicting the accuracy of parallel devices.

  • PDF

A Study on The Surface Roughness and Area Error at FDM (FDM에서 경사면의 표면과 면적오차법의 관계에 대한 연구)

  • 전재억;정진서;황영모;김수광;김준안;계중읍;하만경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.24-29
    • /
    • 2002
  • In any rapid prototyping process, the layer by layer building process introduces an area error between the staircase and the surface line specified by the computer-aided design model. This affects the dimensional accuracy as well as the surface finish for different part build orientations. This paper describes a methodology for computing the area error for any orientation of the part built by the fused deposition modelling system. This technique can be applied to determine the best build orientation of the part, based on the minimum area error. This technique is verified by comparing the results with the experimental measurements of the area error of the parts built at different orientations.

  • PDF

ULTRASIM$^R$ Integrative Simulation Technology on the Development of Automotive Plastic Parts

  • Jae, Hyung-Ho;De Matos, Zeidam Rachib;Kim, Min-Oug;Glaser, Stefan;Wuest, Andreas
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.132-137
    • /
    • 2012
  • To enhance the CAE accuracy, the definition of material behavior is one of key influence on the result. In case of plastic material with fiber reinforcement, the anisotropic material behavior should be taken into account to increase of CAE accuracy. BASF has developed an innovative CAE tool, ULTRASIM$^R$, which is capable of generating material models of thermoplastic materials for structural simulation. ULTRASIM$^R$, not only the glass fiber orientation effect, but also the weld line effect, tensile-compression anisotropy, strain rate effect are combined in a non-linear material law, which will be evaluated in a unique failure criterion, thus resulting in an highly accurate CAE approach.

  • PDF

Determination of Camera System Orientation and Translation in Cartesian Coordinate (직교 좌표에서 카메라 시스템의 방향과 위치 결정)

  • 이용중
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.109-114
    • /
    • 2000
  • A new method for the determination of camera system rotation and translation from in 3-D space using recursive least square method is presented in this paper. With this method, the calculation of the equation is found by a linear algorithm. Where the equation are either given or be obtained by solving five or more point correspondences. Good results can be obtained in the presence if more than the eight point. A main advantage of this new method is that it decouple rotation and translation, and then reduces computation. With respect to error in the solution point number in the input image data, adding one more feature correspondence to required minimum number improves the solution accuracy drastically. However, further increase in the number of feature correspondence improve the solution accuracy only slowly. The algorithm proposed by this paper is used to make camera system rotation and translation easy to recognize even when camera system attached at end effecter of six degrees of freedom industrial robot manipulator are applied industrial field.

  • PDF

A NEW METHOD FOR MEASURING M-H HYSTERESIS LOOPS OF UNIAXIALLY MAGNETIC MATERIALS

  • Hur, Jeen;Shin, Sung-Chul
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.387-390
    • /
    • 1995
  • We have developed a new method for measuring the M-H hysteresis loop of a spheroid-shape magnetic material having a uniaxial anisotropy and discussed its accuracy at fields near the coercivity. Our torque magnetometric method simultaneously gives the saturation magnetization and the remnant magnetization. Furthermore, the coercivity depending on the applied field orientation is accurately measured by this simple technique. An accuracy of the present method is negligibly affected even at fields near the coercivity, where the magnetization is not uniform. The technique makes a torque magnetometer an extremely high sensitive tool for measuring M-H hysteresis loop.

  • PDF

Implementation of Sonar Bearing Accuracy Measurement Equipment with Parallax Error and Time Delay Error Correction (관측위치오차와 시간지연오차를 보정하는 소나방위정확도 측정 장비 구현)

  • Kim, Sung-Duk;Kim, Do-Young;Park, Gyu-Tae;Shin, Kee-Cheol
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.4
    • /
    • pp.245-251
    • /
    • 2019
  • Sonar bearing accuracy is the correspondence between the target orientation predicted by sonar and actual target orientation, and is obtained from measurements. However, when measuring sonar bearing accuracy, many errors are included in the results because they are made at sea, where complex and diverse environmental factors are applied. In particular, parallax error caused by the difference between the position of the GPS receiver and the sonar sensor, and the time delay error generated between the speed of underwater sound waves and the speed of electromagnetic waves in the air have a great influence on the accuracy. Correcting these parallax errors and time delay errors without an automated tool is a laborious task. Therefore, in this study, we propose a sonar bearing accuracy measurement equipment with parallax error and time delay error correction. The tests were carried out through simulation data and real data. As a result of the test it was confirmed that the parallax error and time delay error were systematically corrected so that 51.7% for simulation data and more than 18.5% for real data. The proposed method is expected to improve the efficiency and accuracy of sonar system detection performance verification in the future.

Evaluation of Cutter Orientations in 5-Axis High Speed Milling of Turbine Blade (터빈블레이드의 5축 고속가공에서 가공경로와 공구기울임 방향의 선정)

  • 임태순;이유하;이득우;김정석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.155-160
    • /
    • 2002
  • Recently, the development of aerospace and automobile industries has brought new technological challenges, rebated to the growing complexity of products and the new geometry of the models. High speed milling with a 5-Axis milling machine has been widely used fur 3D sculptured surface parts. When turbine blades are machined by a 5-axis milling, their thin and cantilever shape causes vibrations, deflections and twists. Therefore, the surface roughness and the waviness of the workpiece are not good. In this paper, the effects of cutter orientation and the lead/tilt angle used to machine turbine blades with a 5-axis high speed ball end-milling were investigated to improve geometric accuracy and surface integrity. The experiments were performed using a lead/tilt angle of 15$^{\circ}$ to the workpiece with four cutter directions such as horizontal outward, horizontal inward, vertical outward, and vortical inward directions. Workpiece deflection, surface roughness and the machined surface were all measured with various cutter orientations such as cutting directions, and lead/tilt angle. The results show that the best cutting strategy for machining turbine blades with a 5-axis milling is horizontal inward direction with a tilt angle.

  • PDF

Variational Formulation for Shape Optimization of Spatial Beam Structures (정식화를 이용한 3차원 구조물의 형상 최적설계)

  • 최주호;김종수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.123-130
    • /
    • 2002
  • A general formulation for shape design sensitivity analysis over three dimensional beam structure is developed based on a variational formulation of the beam in linear elasticity. Sensitivity formula is derived based on variational equations in cartesian coordinates using the material derivative concept and adjoint variable method for the displacement and Von-Mises stress functionals. Shape variation is considered for the beam shape in general 3-dimensional direction as well as for the orientation angle of the beam cross section. In the sensitivity expression, the end points evaluation at each beam segment is added to the integral formula, which are summed over the entire structure. The sensitivity formula can be evaluated with generality and ease even by employing piecewise linear design velocity field despite the bending model is fourth order differential equation. For the numerical implementation, commercial software ANSYS is used as analysis tool for the primal and adjoint analysis. Once the design variable set is defined using ANSYS language, shape and orientation variation vector at each node is generated by making finite difference to the shape with respect to each design parameter, and is used for the computation of sensitivity formula. Several numerical examples are taken to show the advantage of the method, in which the accuracy of the sensitivity is evaluated. The results are found excellent even by employing a simple linear function for the design velocity evaluation. Shape optimization is carried out for the geometric design of an archgrid and tilted bridge, which is to minimize maximum stress over the structure while maintaining constant weight. In conclusion, the proposed formulation is a useful and easy tool in finding optimum shape in a variety of the spatial frame structures.

  • PDF

Kinematic Calibration Method for Redundantly Actuated Parallel Mechanisms (여유구동 병렬기구의 기구학적 보정)

  • 정재일;김종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.355-360
    • /
    • 2002
  • To calibrate a non-redundantly actuated parallel mechanism, one can find actual kinematic parameters by means of geometrical constraint of the mechanism's kinematic structure and measurement values. However, the calibration algorithm for a non-redundant case does not apply fur a redundantly actuated parallel mechanism, because the angle error of the actuating joint varies with position and the geometrical constraint fails to be consistent. Such change of joint angle error comes from constraint torque variation with each kinematic pose (meaning position and orientation). To calibrate a redundant parallel mechanism, one therefore has to consider constraint torque equilibrium and the relationship of constraint torque to torsional deflection, in addition to geometric constraint. In this paper, we develop the calibration algorithm fir a redundantly actuated parallel mechanism using these three relationships, and formulate cost functions for an optimization algorithm. As a case study, we executed the calibration of a 2-DOF parallel mechanism using the developed algorithm. Coordinate values of tool plate were measured using a laser ball bar and the actual kinematic parameters were identified with a new cost function of the optimization algorithm. Experimental results showed that the accuracy of the tool plate improved by 82% after kinematic calibration in a redundant actuation case.

  • PDF

Error Analysis of a Parallel Mechanism Considering Link Stiffness and Joint Clearances

  • Park, Woo-Chun;Song, Jae-Bok;Daehie Hong;Shim, Jae-Kyung;Lim, Seung-Reung;Kyungwoo Kang;Park, Sungchul
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.799-809
    • /
    • 2002
  • In order to utilize a parallel mechanism as a machine tool component, it is important to estimate the errors of its end-effector due to the uncertainties in parts. This study proposes an error analysis for a new parallel device, a cubic parallel mechanism. For the parallel device, we consider two kinds of errors. One is a static error due to link stiffness and the other is a dynamic error due to clearances in the parts. In this study, we propose a stiffness model for the cubic parallel mechanism under the assumption that the link stiffness is a linear function of the link length. Also, from the fact that the errors of u-joints and spherical joints are changed with the direction of force acting on the link, they are regarded as a part of link errors, and then the error model is derived using forward kinematics. Lastly, both the error models are integrated into the total error, which is analyzed with a test example that the platform moves along a circular path. This analysis can be used in predicting the accuracy of other parallel devices.