• Title/Summary/Keyword: Tool Orientation

Search Result 261, Processing Time 0.027 seconds

Fabrication of EDM Electrodes by Localized Electrochemical Deposition

  • Habib, Mohammad Ahsan;Gan, Sze Wei;Lim, Han-Seok;Rahman, Mustafizur
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.75-80
    • /
    • 2008
  • The fabrication of complex three-dimensional electrodes for micro electrical discharge machining (micro-EDM) is an important issue in the field of micromachining Localized electrochemical deposition (LECD) is a simple and inexpensive technique for fabricating micro-EDM electrodes. This study presents a new process for manufacturing electrodes with complex cross-sections using masks of different shapes, In this process, a non-conductive mask is placed between an anode and cathode that are immersed in a plating solution of acidified copper sulfate. The LECD is achieved by applying a pulsed voltage between the anode and cathode, which are separated by a small distance. In this setup, the cathode is placed above the anode and the mask, so that the deposited electrode can be used directly for EDM without changing the tool orientation. We found that the microstructure of the deposited electrode is influenced by the concentration of the plating solution and organic additives. Moreover, the values of the voltage, frequency, and duty cycle of the pulsed input have significant effects on the microstructure of the fabricated electrode. Finally, the optimum values of the voltage, frequency, and duty cycle were determined for the most effective fabrication of complex-shaped electrodes.

Robotic Guidance of Distal Screwing for Intramedullary Nailing Using Optical Tracking System (광학식측정장치를 이용한 금속정 내고정 수술의 원위부 나사체결을 위한 로보틱 유도 시스템)

  • An, Liming;Kim, Woo Young;Ko, Seong Young
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.4
    • /
    • pp.411-418
    • /
    • 2017
  • During the intramedullary nailing procedure, surgeons feel difficulty in manipulation of the X-ray device to align it to axes of nailing holes and suffer from the large radiation exposure from the X-ray device. These problems are caused by the fact the surgeon cannot see the hole's location directly and should use the X-ray device to find the hole's location and direction. In this paper, we proposed the robotic guidance of the distal screwing using an optical tracking system. To track the location of the hole for the distal screwing, the reference marker is attached to the proximal end of an intramedullary nail. To guide the drill's direction robustly, the 6-degree-of-freedom robotic arm is used. The robotic arm is controlled so as to align the drill guiding tool attached the robotic arm with the obtained the hole's location. For the safety, the robot's linear and angular velocities are restricted to the predefined values. The experimental results using the artificial bones showed that the position error and the orientation error were 0.91 mm and $1.64^{\circ}$, respectively. The proposed method is simple and easy to implement, thus it is expected to be adopted easily while reducing the radiation exposure significantly.

A preparatory study on fish behavioral properties in a set-net

  • KANG, Myounghee;LIU, Jenming;HASSAN, Raja Bidin bin Raja;FAJARYANTI, Rina;HWANG, Bokyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.2
    • /
    • pp.105-113
    • /
    • 2020
  • The fish influx and behavioral properties at a set-net off Goseong, South Korea were investigated using an imaging sonar. As a result, the average influx of fish was 33.9% at day time and 66.1% at night time, respectively, which indicated that a majority of fish entered into a playground in the set-net at night. The fish behavioral properties such as target (fish) length, range, orientation and major-axis angle were examined and compared among survey dates (4, 5, and 6 June 2019) using the statistical analysis tool (analysis of variance, ANOVA). The behavioral properties presented differently sometime of survey dates. This is preparatory study to support fish behavior properties in a set-net. It is expected that more elaborated behavioral information of fishes in the set-net is beneficial for designing and deploying a set-net fishing gear as well as general fish behavior research in the future.

3D Orientation and Position Tracking System of Surgical Instrument with Optical Tracker and Internal Vision Sensor (광추적기와 내부 비전센서를 이용한 수술도구의 3차원 자세 및 위치 추적 시스템)

  • Joe, Young Jin;Oh, Hyun Min;Kim, Min Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.579-584
    • /
    • 2016
  • When surgical instruments are tracked in an image-guided surgical navigation system, a stereo vision system with high accuracy is generally used, which is called optical tracker. However, this optical tracker has the disadvantage that a line-of-sight between the tracker and surgical instrument must be maintained. Therefore, to complement the disadvantage of optical tracking systems, an internal vision sensor is attached to a surgical instrument in this paper. Monitoring the target marker pattern attached on patient with this vision sensor, this surgical instrument is possible to be tracked even when the line-of-sight of the optical tracker is occluded. To verify the system's effectiveness, a series of basic experiments is carried out. Lastly, an integration experiment is conducted. The experimental results show that rotational error is bounded to max $1.32^{\circ}$ and mean $0.35^{\circ}$, and translation error is in max 1.72mm and mean 0.58mm. Finally, it is confirmed that the proposed tool tracking method using an internal vision sensor is useful and effective to overcome the occlusion problem of the optical tracker.

Human-like Arm Movement Planning for Humanoid Robots Using Motion Capture Database (모션캡쳐 데이터베이스를 이용한 인간형 로봇의 인간다운 팔 움직임 계획)

  • Kim, Seung-Su;Kim, Chang-Hwan;Park, Jong-Hyeon;You, Bum-Jae
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.2
    • /
    • pp.188-196
    • /
    • 2006
  • During the communication and interaction with a human using motions or gestures, a humanoid robot needs not only to look like a human but also to behave like a human to make sure the meanings of the motions or gestures. Among various human-like behaviors, arm motions of the humanoid robot are essential for the communication with people through motions. In this work, a mathematical representation for characterizing human arm motions is first proposed. The human arm motions are characterized by the elbow elevation angle which is determined using the position and orientation of human hands. That representation is mathematically obtained using an approximation tool, Response Surface Method (RSM). Then a method to generate human-like arm motions in real time using the proposed representation is presented. The proposed method was evaluated to generate human-like arm motions when the humanoid robot was asked to move its arms from a point to another point including the rotation of its hand. The example motion was performed using the KIST humanoid robot, MAHRU.

  • PDF

Using modified Halpin-Tsai approach for vibrational analysis of thick functionally graded multi-walled carbon nanotube plates

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.657-668
    • /
    • 2017
  • In the most of previous studies, researchers have restricted their own studies to consider the effect of single walled carbon nanotubes as a reinforcement on the vibrational behavior of structures. In the present work, free vibration characteristics of functionally graded annular plates reinforced by multi-walled carbon nanotubes resting on Pasternak foundation are presented. The response of the elastic medium is formulated by the Winkler/Pasternak model. Modified Halpin-Tsai equation was used to evaluate the Young's modulus of the multi-walled carbon nanotube/epoxy composite samples by the incorporation of an orientation as well as an exponential shape factor in the equation. The exponential shape factor modifies the Halpin-Tsai equation from expressing a straight line to a nonlinear one in the multi-walled carbon nanotubes wt% range considered. The 2-D generalized differential quadrature method as an efficient and accurate numerical tool is used to discretize the equations of motion and to implement the various boundary conditions. The effects of two-parameter elastic foundation modulus, geometrical and material parameters together with the boundary conditions on the frequency parameters of the plates are investigated. This study serves as a benchmark for assessing the validity of numerical methods or two-dimensional theories used to analysis of annular plates.

Ground support performance in deep underground mine with large anisotropic deformation using calibrated numerical simulation (case of mine-H)

  • Hu, Bo;Sharifzadeh, Mostafa;Feng, Xia-Ting;Talebi, Roo;Lou, Jin-Fu
    • Geomechanics and Engineering
    • /
    • v.21 no.6
    • /
    • pp.551-564
    • /
    • 2020
  • High-stress and complex geological conditions impose great challenges to maintain excavation stability during deep underground mining. In this research, large anisotropic deformation and its management by support system at a deep underground mine in Western Australia were simulated through three-dimensional finite-difference model. The ubiquitous-joint model was used and calibrated in FLAC3D to reproduce the deformation and failure characteristics of the excavation based on the field monitoring results. After modeling verification, the roles of mining depth also the intercept angle between excavation axis and foliation orientation on the deformation and damage were studied. Based on the results, quantitative relationships between key factors and damage classifications were presented, which can be used as an engineering tool. Subsequently, the performance of support system installation sequences was simulated and compared at four different scenarios. The results show that, first surface support and then reinforcement installation can obtain a better controlling effect. Finally, the influence of bolt spacing and ring spacing were also discussed. The outcomes obtained in this research may play a meaningful reference for facing the challenges in thin-bedded or foliated ground conditions.

Fabrication of Silicon Angle Standard and Calibration of Rotary Encoder Using Silicon Angle Standard (각도교정용 실리콘 다면체의 제작과 이를 이용한 회전에코더의 각도교정)

  • 박진원;엄천일
    • Korean Journal of Crystallography
    • /
    • v.6 no.2
    • /
    • pp.88-92
    • /
    • 1995
  • Higly pure silicon crystals with an almost perfect lattice structure constityte a powerful metrological tool. The streographic standard prohection for the (111) orientation of diamond structure found by the Laue method shows angles between net planes of 60°. This value is known to be certain to some 10-8 rad. We have made a six-faced silicon polygon, and the (220) lattice planes of the polygon act as a reference angular standard. The information of angles between lattice planes could be taken by the X-ray diffraction. The angle of the rotary encoder have been calibrated using the silicon angle standard. The X-ray optics was double crystal arrangement.

  • PDF

A Study on The Burr Minimization by The Chemical Mechanical Micro Machining(C3M) (화학 기계적 미세 가공기술에 의한 버 최소화에 관한 연구)

  • Lee, Hyeon-U;Park, Jun-Min;Jeong, Sang-Cheol;Jeong, Hae-Do;Lee, Eung-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.177-184
    • /
    • 2001
  • C3M(chemical mechanical micro machining) is applied for diminishing the size of burr and fabricating the massless patterning for aluminium wafer(thickness of 1${\mu}m$). It is difficult to perform the micro size machining with the radically increased shear stress. While the miniaturization and function-orientation of parts has been needed in the many field such as electronics, optics and medicine. etc., it is not enough to satisfy the industry needs in the machining technology. In this paper feasibility test of diminishing burr and fabricating maskless pattern was experimented and analyzed. In the experiment oxide layer was farmed on the aluminium with chemical reaction by ${HNO_3}$(10wt%), then the surface was grooved with tungsten carbide tool for the different condition such as the load and fred rate. The result was compared with the conventional machining to show the improvement of C3M with SEM for burr diminish and XPS for atomic existence, AFM for more precise image.

  • PDF

Microscopic Imaging of Articular Cartilage using Polarization-Sensitive Optical Coherence Tomography

  • Lee Sang-Won;Oh Jung-Taek;Kim Beop-Min
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.1
    • /
    • pp.37-42
    • /
    • 2005
  • We construct and test the polarization-sensitive optical coherence tomography (PS-OCT) system for imaging porcine and human articular cartilages. PS-OCT is a new imaging technology that provides information regarding not only the tissue structures but tissue components that show birefringence such as collagen. In this study, we measure the cartilage thickness of the porcine joint and the phase retardation due to collagen birefringence. Also, we demonstrate that changes of the collagen fiber orientation could be detected by the PS-OCT system. Finally, differences between normal and damaged human articular cartilage are observed using the PS-OCT system, which is then compared with the regular histology pictures. As a result, the PS-OCT system is proven to be effective for diagnosis of the pathology related to the cartilage. In the future, this technology may be used for discrimination of the collagen types. When combined with endoscope technologies, the PS-OCT images may become a useful tool for in vivo tissue testing.