• Title/Summary/Keyword: Tool Corner Radius

Search Result 21, Processing Time 0.02 seconds

Optimal Ball-end and Fillet-end Mills Selection for 3-Axis Finish Machining of Point-based Surface

  • Kayal, Prasenjit
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.51-60
    • /
    • 2007
  • This paper presents an algorithm of optimal cutting tool selection for machining of the point-based surface that is defined by a set of surface points rather than parametric polynomial surface equations. As the ball-end and fillet-end mills are generally used for finish machining in a 3-axis computer numerical control machine, the algorithm is applicable for both cutters. The optimum tool would be as large as possible in terms of the cutter radius and/or corner radius which maximise (s) the material removal rate (i.e., minimise (s) the machining time), while still being able to machine the entire point-based surface without gouging any surface point. The gouging are two types: local and global. In this paper, the distance between the cutter bottom and surface points is used to check the local gouging whereas the shortest distance between the surface points and cutter axis is effectively used to check the global gouging. The selection procedure begins with a cutter from the tool library, which has the largest cutter radius and/or corner radius, and then adequacy of the point-density is checked to limit the accuracy of the cutter selection for the point-based surface within tolerance prior to the gouge checking. When the entire surface is gouge-free with a chosen cutting tool then the tool becomes the optimum cutting tool for a list of cutters available in the tool library. The effectiveness of the algorithm is demonstrated considering two examples.

The Spinnability of Multi-step Cylindrical Cup in Spinning Process (스피닝 공정을 이용한 다단 원형 컵 형상의 성형성에 관한 연구)

  • 박중언;한창수;최석우;김승수;나경환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1016-1020
    • /
    • 2001
  • The spinning is a very effective manufacturing technology for short production runs in a variety of sizes and shapes, because it can form the cross-section or tubular parts various shapes. However extensive experimental and analytical research has not been carried out. In this study, and fundamental experiment was conducted to improve productivity with process parameter such as tool path, angle of roller holder(a), feed rate(v) and corner radius of forming roller(Rr). These factors were selected as variables in the experiment because they were most likely expected to have and effect on spring back. The clearance was controlled in order to achieve the precision product which is comparable to deep drawing one. And also thickness and diameter distribution of a multistage cup obtained by shear spinning process were observed and compared with those of a commercial product produced by conventional deep drawing.

  • PDF

Spur gear forging tool manufacturing method considering elastic deformation due to shrink-fitting (열박음에 의한 탄성변형을 고려한 평기어금형 제작 방법에 관한 연구)

  • Kang, J.H.;Ko, B.H.;Jae, J.S.;Kang, S.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.381-385
    • /
    • 2006
  • This research introduces easy tool manufacturing method regarding tool manufacturing procedure. In the conventional method, wire cutting machining and lapping operation of corner and render region were performed after shrink-fitting to ensure the accuracy of gear profile. But lapping operation is very difficult due to corner and render is located deep inside of die. In this research, wire cutting operation was performed after $1^{st}$ ring was shrink-fitted to ease lapping operation and increase the accuracy of corner radius. Before $2^{nd}$ ring fitting, lapping was completed. Elastic deformation amount due to $2^{nd}$ ring fitting and cold forging was calculated through finite element analysis and wire cutting specification was offset in that amount. Comparison of gear dimension between analysis and forged part ensures the validity of new manufacturing methods.

  • PDF

Numerical analysis on the material flow in stepped rod forming (단붙이 로드의 성형에서 소재유동에 관한 해석)

  • Go, Byung-Du;Gang, Dong-Myung;Lee, Ha-Sung
    • Design & Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.43-47
    • /
    • 2008
  • This paper is concerned with the analysis of material flow characteristics of stepped rod forming. The analysis in this paper concentrated on the evaluation of the design parameters for deformation patterns of tube forming, load characteristics, extruded length, and die pressure. The design factors such as punch nose radius, die corner radius, friction factor, and punch face angle are involved in the simulation. The stepped rod forming is analyzed by using a commercial finite element code. This simulation makes use of stepped rod material and punch geometry on the basis of punch geometry recommended by International Cold Forging Group. As radius ratio is large, forming load was reduced but extruded length ratio was increased.

  • PDF

Friction Model for Sheet Metal Forming Analysis (Part1 : Experiment) (박판성형 해석용 마찰모델 (1부 : 실험))

  • 이봉현;금영탁
    • Transactions of Materials Processing
    • /
    • v.11 no.4
    • /
    • pp.349-354
    • /
    • 2002
  • In order to find the effect of lubricant viscosity, sheet surface roughness, tool geometry, and forming speed on the frictional characteristics in sheet metal forming, a sheet metal friction tester was designed and manufactured and friction test of various sheet were performed. Friction test results showed that as the lubricant viscosity becomes lower, the friction coefficient is higher. When surface roughness is extremely low or high, the friction coefficient is relatively high. The result also show that as the punch radius and punch speed becomes bigger, the friction coefficient is smaller. Using experimental results, the mathematical expression between friction coefficient and lubricant viscosity, surface roughness, punch comer radius, or punch speed is also described.

A study on the cold heading process design optimization by taguchi method (다구찌법을 활용한 헤딩공정설계 최적화 연구)

  • Joon Hwang;Jin-Hwan Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.216-225
    • /
    • 2023
  • This paper describes the finite element analysis and die design change of cold heading punching process to increase the cold forging tool life and reduce the tool wear and stress concentration. Through this study, the optimization of punch tool design has been studied by an analysis of tool stress and wear distribution to improve the tool life. Plastic deformation analysis was carried out in order to understand the cold heading process between tool and workpiece stress distribution. Cold heading punch die design was set up to each process with different four types analysis progressing, the cold heading punch dies shapes with combination of point angle and punch edge corner radius shapes of cold forging dies, punch die material properties and frictional coefficient. The design parameters of point angle and corner radius of punch die geometry, die material properties and frictional coefficient were selected to apply optimization with the DoE (design of experiment) and Taguchi method. DoE and Taguchi method was performed to optimize the cold heading punch die design parameters optimization for bolt head cold forging process, it was possible to expect an reduce the cold heading punch die wear to the 37 % compared with current using cold heading punch in the shop floor.

Springback Reduction of Multi-step Cylindrical Cup in Spinning Process. (스피닝공정에 있어서 스프링백 억제방안)

  • Park, Joong-Eon;Lee, Woo-Young;Choi, Seogou;Kim, Seung-Soo;Na, Kyoung-Hoan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.186-191
    • /
    • 2001
  • Spinning process is a chipless metal forming method for axi-symmetric parts, which is more economical, efficient and versatile method for producing parts than the other sheet metal forming process such as stamping or deep drawing. In this study, a fundamental experiment was conducted to improve productivity with process parameters such as tool path, angle of roller holder($\alpha$), feed rate($\gamma$) and corner radius of forming roller(Rr). These factors were selected as variables in the experiment because they were most likely expected to hale an effect on spring back. The empirical results were analyzed to know how much spring back was affected by these factors. And also thickness and diameter distribution of a multistage cup obtained by spinning process were observed and compared with those of a commercial product produced by conventional deep drawing.

  • PDF

Characteristics of Tool Deflection of Ball-end Mill Cutter in Pencil Cutting of the Corner (코너부의 펜슬가공시 볼엔드밀의 공구변형 특성)

  • Wang, Duck-Hyun;Yun, Kyung-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.123-129
    • /
    • 1999
  • Ball-end milling process is widely used in the die and mold manufacturing because of suitable one for the machining of free-form surface. During the process, the pencil cutting operation can be adopted before finish cut to eliminate overload in uncut area caused by large diameter of ball-end mill. The ball-end mill cutter for the pencil cutting is easily deflected by cutting force due to the long and thin shape, and the tool deflection in pencil cutting is one of the main reason of the machining errors in a free-form surface. The purpose of this study is to find the characteristics of deflected cutter trajectory by constructing measurement system with eddy-current sensor. It was found that the severe reduction of corner radius produced the overcut during the plane cutting. Up cutting method induced the overcut both plane and slope cutting, but down cutting one induced the undercut. From the experiments, down cutting with upward cutting path can generate the small undercut surface.

  • PDF

The Material Flow according to Die Geometry in Can-Flange Forming (Can-Flange 성형에서 금형형상에 따른 소재 유동특성)

  • Ko, Byung-Du;Lee, Ha-Sung
    • Design & Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.42-47
    • /
    • 2012
  • The paper deals with an analysis of an extrusion process with a divided material flow in a combined radial - backward extrusion. We have discussed the influences of tool geometry such as punch nose angle, relative gap height, die corner radius on material flow and surface expansion into can and flange region. To analyse the process, numerical simulations by the FEM and experiment by physical modeling using Al alloy as a model material have been performed. Based on the results, the influence of fixed parameters on the distribution of divided material flow and surface expansion are obtained.

  • PDF

Friction Model for Finite Element Analysis of Sheet Metal Forming Processes (박판 성형공정 유한요소 해석용 마찰모델)

  • Keum Y.T.;Lee B.H.
    • Transactions of Materials Processing
    • /
    • v.13 no.6 s.70
    • /
    • pp.528-534
    • /
    • 2004
  • In order to find the effect of lubricant viscosity, tool geometry, forming speed, and sheet material properties on the friction in the sheet metal forming, friction tests were performed. Friction test results show that as the lubricant viscosity becomes lower, the friction coefficient is higher. When surface roughness is extremely low or high, the friction coefficient is high. The bigger die corner radii and punch speed are, the smaller is the friction coefficient. From the experimental observation, the friction model which is the mathematical expression of friction coefficient in terms of lubricant viscosity, roughness and hardness of sheet surface, punch corner radius, and punch speed is constructed. By comparing the punch load found by FEM using the proposed friction model with that obtained from the experiment in 2-D stretch forming, the validity and accuracy of the friction model are demonstrated.