• Title/Summary/Keyword: Tool Compensation

Search Result 299, Processing Time 0.024 seconds

A Study on Measurement for Endmill Dia. using Electric Contact Method (공구마모보정을 위한 전기접점식 자동공구 보정시스템 개발)

  • 정상화;신형성;나윤철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.445-449
    • /
    • 2001
  • The tool wear that is developed by long-term machining in mold manufacturing with machining center makes a severe influence to the accuracy and the surface roughness. In this reason, tool-wear supervising system which has guaranteed high accuracy and high speed is needed to improve the measurement quality. Touching probe and touch sensor are widely used to measure the tool profile at on-machine measurement. In this paper, using the newly developed electric touch point measuring system, the Automatic Tool Compensation System is developed to correct the error of tool diameter resulted from the wear, and the operating method of this system is also provided.

  • PDF

Machining Error Compensation for Tool Deflection in Micro Slot-Cutting Processes for Fabrication of Micro Shapes (미세형상 가공을 위한 Micro Slot 가공에서의 공구변형에 의한 가공오차 보상)

  • Sohn, Jong-In;Yoon, Gil-Sang;Seo, Tae-Il
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.121-127
    • /
    • 2008
  • Micro end-milling has been becoming an important machining process to manufacture a number of small products such as micro-devices, bio-chips, micro-patterns and so on. Despite the importance of micro end-milling, many related researches have given grand efforts to micro end-milling phenomenon, for example, micro end-milling mechanism, cutting force modeling and machinability. This paper strongly concerned actual problem, micro tool deflection, which causes excessive machining errors on the workpiece. To solve this problem, machining error prediction method was proposed through a series of test micro cutting and analysis of their SEM images. An iterative algorithm was applied in order to obtain corrected tool path which allows reducing machining errors in spite of tool deflection. Experiments are carried out to validate the proposed approaches. In result, remarkable error reduction could be obtained.

Calibration/Compensation of Errors of the Touch Probe (접촉식 프로브의 오차교정 및 보정기술)

  • 박희재;이교일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2081-2087
    • /
    • 1994
  • Touch trigger probes are widely used for inspection purposed in the CMM(Coordinate meauring machine) or machine tool. The errors introduced by measurement probe are fairy systematic, thus can be calibrated and compensated properly. This paper presents a technique for the error calibration and compensation of the probe errors, which can be easily applicable to the manufacturers and users of the measurement probe. The probe coordinate system is defined for the probe error assessment, and a reference sphere ball is measured, and the probe errors are calibrated. The calibrated probe errors are represented in the 3D error map and 2D error map along probing direction. Detail algorithms for the error compensation are proposed.

Error Identification and Compensation for NC Machine Tools Using the Reference Artifact (기준물을 이용한 NC 공작기계의 오차규명 및 보상제어)

  • 정성종
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.2
    • /
    • pp.102-111
    • /
    • 2000
  • Methodology of volumetric error identification and compensation is presented to improve the accuracy of NC machine tools by using a reference artifact and a touch trigger probe. Homogeneous transformation matrix and kinematic chain are used for modeling the geo-metric and thermal errors of a three-axis vertical machining center. The reference artifact is designed and fabricated to identify the model parameters by machine tool metrology. Parameters in the error model are able to be identified and updated by direct measurement of the reference artifact on the machine tool under the actual conditions which include the thermal interactions of error sources. A volumetric error compensation system based on IBM/PC is linked with a FANUC CNC controller to compensate for the identified volumetric error in machining workspace.

  • PDF

A Study on the Compensation of the Thermal Errors for Machine Tool (공작기계 열변위 보정에 관한 연구)

  • 이인재
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.673-678
    • /
    • 2000
  • This paper presents an indirect compensation of thermal errors during machining, in which thermal error is modeled as a linear regression of temperatures measured at 4 specified positions. In this regression model, weighting coefficients of the measured temperatures were estimated by using the least square method. The grinding test with compensation, after 4-hour warming-up operation before the test, showed that the maximum machining error of the work pieces was reduced to 12${\mu}{\textrm}{m}$ while it measured 28${\mu}{\textrm}{m}$ without compensation. Furthermore the standard deviation of machining errors was also reduced from 8${\mu}{\textrm}{m}$ to 2${\mu}{\textrm}{m}$.

  • PDF

Optimal Variable Selection in a Thermal Error Model for Real Time Error Compensation (실시간 오차 보정을 위한 열변형 오차 모델의 최적 변수 선택)

  • Hwang, Seok-Hyun;Lee, Jin-Hyeon;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.215-221
    • /
    • 1999
  • The object of the thermal error compensation system in machine tools is improving the accuracy of a machine tool through real time error compensation. The accuracy of the machine tool totally depends on the accuracy of thermal error model. A thermal error model can be obtained by appropriate combination of temperature variables. The proposed method for optimal variable selection in the thermal error model is based on correlation grouping and successive regression analysis. Collinearity matter is improved with the correlation grouping and the judgment function which minimizes residual mean square is used. The linear model is more robust against measurement noises than an engineering judgement model that includes the higher order terms of variables. The proposed method is more effective for the applications in real time error compensation because of the reduction in computational time, sufficient model accuracy, and the robustness.

  • PDF

Development of Online Realtime Positioning Error Compensation System for CNC Machine Tools (CNC 공작기계용 온라인 실시간 위치오차 보정시스템의 개발)

  • Chung, Chae-Il;Kim, Jong-Won;Nam, Weon-Woo;Lee, Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.45-52
    • /
    • 1999
  • The online realtime positioning error compensation system 'SKY-PACS' is developed to correct geometric errors, thermal errors and tool deflection errors induced by cutting forces on the vertical machining center. 'SKY-PACS' communicates position commands and position compensation signals with the CNC controller at 100Hz, which is CNC control frequency. So the compensation procedure can be applied during axis movement. Using 'SKY-PACS', Maximum 1 axis positioning accuracy was corrected from 5{\mu}m$ to 2{\mu}m$and the squareness error of X-Y table was corrected from 51{\mu}m$/m to below 4{\mu}m$/m. The error compensation under the cutting condition is carried out by ISO10791-7. And the measurement of test-pieces shows that the roundness is corrected rom 8{\mu}m$ to below 5{\mu}m$.

  • PDF

A Fixed Amount Compensation Plan for a Tool Wear Process (마모공정에 대한 정량 보정계획)

  • 최인수;이민구
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.40
    • /
    • pp.233-240
    • /
    • 1996
  • A fixed amount compensator is proposed for a process with a linear tool wear function. A Cost model is constructed which involve process adjustment cost and quality loss. Symmetric and asymmetric quadratic functions of the deviation of a quality measurement from the nominal target value are considered as the quality loss functions. Methods of finding optimal values of initial setting and compensation limit are presented and a numerical example is given.

  • PDF

Autonomous Compensation of Thermal Deformation during Long-Time Machining Process (공작기계 장시간 가공중 열변형의 CNC 자율보정 기술)

  • Kim, Dong-Hoon;Song, Jun-Yeob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.4
    • /
    • pp.297-301
    • /
    • 2014
  • The biggest factors, which lower the machining accuracy of machine, are thermal deformation and chatter vibration. In this article, we introduce the development case of a device and technology that can automatically compensate thermal deformation errors of machine during long-time processing on the machine tool's CNC (Computerized Numerical Controller) in real time. In machine processing, the data acquisition of temperature signal in real time and auto-compensation of the machine origin of machine tools depending on thermal deformation have significant influence on improving the machining accuracy and the rate of operation. Thus, we attempts to introduce the related contents of the development we have made in this article : The development of a device that embedded the acquisition part of temperature data, linear regression to get compensation value, compensation model of neural network and a system that compensates the machine origin of machine tool automatically during manufacturing process on the CNC.

Machined Surface Inspection Based on Surface Fairing on the Machine Tool (곡면평활화를 고려한 공작기계상에서의 가공곡면 검사)

  • Lee, Se-Bok;Kim, Gyeong-Don;Jeong, Seong-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.937-945
    • /
    • 2000
  • The assessment of machined surface is difficult because the freeform surface must be evaluated by surface fairness as well as dimensional accuracy. In this study, the machined freeform surface is modeled by interpolating the data measured on the machine tool into the mathematical continuous surface, and then the surface model is improved with the parameterization to minimize surface fairness. The accuracy reliability of the measured data is confirmed through compensation of volumetric errors of the machine tool and of probing errors. Non-uniform B-spline surface interpolation method is adopted to guarantee the continuity of surface model. Surface fairness is evaluated with the consideration of normal curvature on the interpolated surface. The validity and usefulness of the proposed method is examined through computer simulation and experiment on the machine tool.