• Title/Summary/Keyword: Tool Change

Search Result 1,868, Processing Time 0.033 seconds

A Study of Improvement of Machining Accuracy Induced Thermal Deformation (열변형에 따른 가공 정밀도 개선에 관한 연구)

  • 홍성오
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.263-268
    • /
    • 1998
  • Development of high speed feed drive system has been a major issue for the past few decades in machine tool industries. The reduction of the tool change time as well as rapid travel time can enhance the productivity. However, the high speed feed drive system generates more heat in nature, which leads thermal expansion that has adverse effects on the accuracy of machined parts. The detail of the model proposed is described in the paper together with the experimental methodologies using a proposed compact measurement system to examine the validity of the proposed approach. The results showed the machining accuracy could be maintained to better than $\pm$5${\mu}{\textrm}{m}$ while using this T-18 sensor

  • PDF

Analysis of Shear and Friction chacteristics in End milling with variable cutting condition (Part 1 Up-end milling) (절삭조건에 따른 엔드밀링 가공시 전단 및 마찰 특성 분석(1. 상향 엔드밀링))

  • Lee, Young-Moon;Yang, Seung-Han;Ming Chen;Jang, Seung-Il
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.223-228
    • /
    • 2003
  • In end milling processes, characterized by use of rotating tools, the underformed chip thickness varies periodically with the phase change of tool. In current study, as a new approach to analyse shear behaviors In the shear plane and chip-tool friction behavior chip-tool contact region during an end milling process. In this approach, an up-end milling process is transformed into an equivalent oblique cutting process. Experimental investigations for two sets of cutting tests i.e.. up-end milling and the equivalent oblique cutting test were performed to verify the presented model.

  • PDF

Experimental study on injection molding parts weight according to foam molding process (발포 성형 공정에 따른 사출 성형품 무게에 관한 실험적 연구)

  • Jung, Hyun-Suk;Hong, Cheong-Min;Lee, Ha-Seong;Kim, Sun-Yong
    • Design & Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.24-28
    • /
    • 2015
  • Speaking in general terms the form injection process can be described as a new process-variant of already known structural foam molding technology which roots go back to the early sixties. The most limiting factors of already know foaming processes are large cell size and the lack of uniformity of these cells as well and the inability to foam all kinds of plastic materials. In this paper, Process Study on weight change in injection rate during foaming. Experimental conditions were set as the injection speed 50,150,300 and 450 mm/s. The experiments PA, PA+GF, PP, was confirmed that the weight increase to PP+TA.

  • PDF

On Cutting Characteristics Change of Low Temperature Cooling Tool(1st Report) - Cutting Characteristics of Cage Motor Rotor - (저온냉각공구의 절삭특성 변화 (제1보) -모터 회전자의 절삭특성)

  • 김순채;김희남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.44-48
    • /
    • 1994
  • The cutting process of cage motor rotor require high precision and good roughness. The surface roughness of cutting face is very important factor with effect on the magnetic flux density of cage motor rotor. The paper describes a cause of decrease in the cutting force and roughness on low temperature cooling tool by means of analysis on the mechanism of force system at cutting confition and experimental findings. The main results as compared with the room temperature cutting are as follow : 1) The cutting resistance decreased due to low temperature cooling tool. 2) The surface roughness decreased due to low temperature cooling tool.

  • PDF

Shear and Friction Characteristics in Down-End Milling with Different Helix Angles (하향엔드밀링시 헬릭스각에 따른 전단 및 마찰특성변화)

  • 이영문;장승일;서민교;손정우
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.17-24
    • /
    • 2004
  • In end milling process, undeformed chip thickness and cutting forces vary periodically with phase change of the tool. Recently, a model has been proposed to simulate the shear and friction characteristics of an up-end milling process in terms of the equivalent oblique cutting to this. In the current study, a down-end milling process has been replaced with the equivalent oblique cutting process. And shear and tool-chip friction characteristics variation of SM45C steel has been studied using the end-mills of different helix angles. The specific shear and friction energy consumed with helix angle of $50^{\circ}$ is somewhat larger than those of$30^{\circ}$ and $40^{\circ}$. The specific shear energy consumed is about 76-77% of the specific cutting energy regardless the helix angles.

A study on the surface roughness assessment of polished surfaces (연마 다듬질 가공면의 표면 미세형상 평가에 관한 연구)

  • 조남규;김현국;권기환;한창수;안유민;이성환;박균명
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.326-331
    • /
    • 2000
  • This paper describes the statistical analysis techniques for the surface roughness assessment of polished surfaces. In experiments, the polishing process of the sample surfaces which are manufactured by ball end mill is consist of two steps; the cusp removal process and the surface finishing process. For the cusp removal process, the criterion of cusp removal was established from the power spectrum analysis to assess the change of the cusp removal rate. For the finishing process, the surface was polished by the rotational CBN tool and vibration wood tool. And the surface quality of polished surface was assessed using the functional parameters based on the statistical values of surface profiles. Consequently, the surface finish performance of the polished surface using the vibration wood tool was improved.

  • PDF

The Construction of CAE Process for Die Development Period Shortening (금형 개발 기간 단축을 위한 CAE(전공정해석) PROCESS 구축)

  • Kang D. K.;Jung I. S.;Ha K. Y.;Lee S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.08a
    • /
    • pp.41-52
    • /
    • 2003
  • The tendency of current die manufacturing is focusing into development period shortening and panel quality improvement. This brings change of manufacturing process. In existing process, depended on experience, we were faced on a limit of sufficiency in this focus. Thus, we have attempted to make a conquest of that by constructing a process of CAE. Our attempt apply not only draw die formability but also trimming and flanging die formability with simulation of sheet metal. In this paper, we publish effects that were obtained by constructing a process.

  • PDF

A Study on the Thermal Specific of Operational Spindle System of Machine Tool (공작기계 주축부 운전시 열적 특성에 관한연구.)

  • 임영철;김종관
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.498-503
    • /
    • 2002
  • This paper has studied thermal characteristics of machine tool to develope high speed spindle and optimum design considering the thermal deformation. Comparing the test data of temperature measurement and structural analysis data using FEM, we verified the test validity and predicted thermal deformation, influence of spindle generation of heat, and established cooling system to prevent the thermal deformation. 1) The temperature rise of spindle system depends on increasing number of rotation and shows sudden doubling increment of number of rotation over 7,000rpm. 2) Oil jacket cooling can be effective cooling method below 8,000rpm but, over 8,000rpm, it shows the decrement of cooling effect. 3) Comparing FEM analysis results and revolution test results, we can confirmn approximate temperature change consequently, it is possible to simulate temperature rise and thermal distribution on the inside of spindle system. 4) We can confirm that simulated approach by FEM analysis can be effective mettled in thermal-appropriate design.

  • PDF

A Study on In-Porcess Sensor for Recognizing Cutting Conditions (복합가능형 절삭상태인식용 In-Process Sensor에 관한 연구)

  • Chung, Eui-Sik;Kim, Yeong-Dae;NamGung, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.2
    • /
    • pp.47-57
    • /
    • 1990
  • In-process recognition of the cutting states is one of the very important technologies to increase the reliability of mordern machining process. In this study, practical methods which use the dynamic component of the cutting force are proposed to recognize cutting states (i.e. chip formation, tool wear, surface roughness) in turning process. The signal processing method developed in this study is efficient to measure the maximum amplitude of the dynamic component of cutting force which is closely related to the chip breaking (cut-off frequency : 80-500 Hz) and the approximately natural frequency of cutting tool (5, 000-8, 000 Hz). It can be clarified that the monitoring of the maximum apmlitude in the dynamic component of the cutting force enables the state of chip formation which chips can be easily hancled and the inferiority state of the machined surface to be recognized. The microcomputer in-process tool wear monitor- ing system introduced in this paper can detect the determination of the time to change cutting tool.

  • PDF

A Study on the Squareness of Circular Pocket Machining of SCM415 Steel (SCM415강의 원형포켓 가공시 직각도에 관한 연구)

  • Kim, Jin-su;Choi, Chul-Woong;Shin, Mi-Jung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.7
    • /
    • pp.42-47
    • /
    • 2019
  • In this research, we try to study the change of squareness in the cutting process while changing cutting conditions such as feed rate and spindle rotational speed with chromium molybdenum steel (SCM415) material and TiCN, TiAlN coated end mill tool. The TiCN coating tool had the best straightness at 4,000 rpm at a feed rate of 200 mm/min. The TiAlN coating tool was best measured at 3,000 rpm at a feed rate of 200 mm/min. TiAlN coated tools had excellent dimensional tolerance when comparing the coating tool specifics.