• 제목/요약/키워드: Tool Angle

검색결과 827건 처리시간 0.025초

볼-엔드 밀링가공시 절삭력의 시뮬레이션에 관한 연구 (A Study on the Cutting Force Simulation for Ball-end Milling Operation)

  • 홍민성;김종민
    • 한국공작기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.84-91
    • /
    • 2003
  • In metal cutting operation, it is very important that predict cutting force and work surface. Vibration is an unstable cutting phenomenon which is due to the interaction of the dynamics of the chip removal process and the structural dynamics of machine tool. When vibration on, it reduces tool life, results in poor surface roughness and low productivity of the machining process. In this study, the experiments were conducted in machining center without cutting fluid to investigate the phenomenon of vibration. In the experiments, accelerometers were set up at the tail stock and tool holder and signals were picked up. Surface roughness profiles are generated under the ideal condition and the occurrence of vibration based on the surface shaping simulation model.

정면밀링에서 공구경사각에 따른 비절삭저항 변화 (Variation of Specific Cutting Pressure with Different Tool Rake Angles in Face Milling)

  • 류시형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.63-68
    • /
    • 1996
  • In this study, the effect of tool rake angles and the change of cutting conditions on specific cutting pressure in face milling is investigated. The cutting force in face milling is predicted from the double cutting edge model in 3-dimensional cutting. Conventional specific cutting pressure model is modified by considering the variation of tool rake angles. Effectiveness of the modified cutting force model is verified by the experiments using special face milling cutters with different cutter pockets and various rake angles. From the comparison of the pressented model and the specific cutting pressure, it is shown that the axial force can be predicted by the tangential and redial forces without the knowledge of friction angle and shear angle. Also, the relation between specific cutting pressure and cutting cindition including feedrate, cutting velocity and depth of cut is studied.

  • PDF

엔드밀의 경사각에 따른 특성 연구 (A Study of Characteristic According to Rake Angel of Endmill)

  • 김경배;서천석;박찬섭;고성림
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.471-478
    • /
    • 2000
  • Endmill is one of the most important cutting tool, not only for machining of mold and die, but also for manufacturing of car industrial. Futhermore with spindle speeds on the increase and machined-surface quality aspiring to higher levels. The purpose of this study is an analysis of endmill's rake angle for appropriate tools design and making for the high speed machining. In this study, Experimental works are also executed to measure shape of endmills, cutting force, on different shape of endmills. Finally, To get concept of endmill design, Tool life was experimented on various design of tool from this study.

  • PDF

유한요소법에 의한 공구인선의 응력분포에 관한 연구

  • 김정두
    • 한국정밀공학회지
    • /
    • 제1권1호
    • /
    • pp.50-58
    • /
    • 1984
  • In the present paper are calculated and compared the stresses on the normal tools and the restricted tools which have three various rake angles by Least Square Method. The results obtained are summerized as follows. The tool displacement at rake angle .alpha. = 12 .deg. and .alpha. = 0 .deg. is positive value in the principal cutting direction and negative value in the feed direction. At rake angle .alpha. = -12 .deg. the displacement is negative value in both of directions. The principal stress of the restricted and normal tool is maximum at the tip of the tool, the shear stress is maximum after a certain distance from the tip. The result of FEM and P.E method shows that in the range of rapid decreasing of normal stress of the tool edge, the shear stress is maintaining a certain value. This is due to the friction characteristic of the chip.

  • PDF

금형가공에서의 CBN 공구의 절삭성능평가 (Assessment of Cutting Ability for CBN Ball End-Milling)

  • 최원식
    • 한국산업융합학회 논문집
    • /
    • 제8권4호
    • /
    • pp.227-234
    • /
    • 2005
  • In this study an experimental investigation was conducted to assesment of cutting ability for CBN ball end-milling, STD11 and NAK80 materials. The cutting force and surface roughness of the work-pieces were obtained in machining center. The assessment of CBN tools were inspected through the tool dynamotor and SEM. When $30^{\circ}$ negative rake angle, the wear and cutting force were good, surface roughness was better at cutting fluid during CBN cutting.

  • PDF

Al합금의 전단시 버어에 관한 연구 (A Study on the Burr Formation in Shearing with Al Alloy)

  • 고대림;전치용;김진무;안흥천
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1440-1443
    • /
    • 2004
  • Shearing including punching, blanking, trimming, slitting, etc is one of the most frequently used processes in sheet metal manufacturing. It has been widely used for manufacturing autobody, electronic components, aircraftbody, etc. In this paper, it has been researched by the experiment to examine the effect of burr height corresponding to die clearance, cutting angle, tool sharpness, etc. This paper presents the experimental results with using Al alloy sheet.

  • PDF

고속가공용 엔드밀의 성능평가 (Performance Evaluation of Endmill in High Speed Machining)

  • 이정무;김건주;정윤교
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.324-328
    • /
    • 2002
  • Recently, in machining industry much progress has been made by taking advantage of high speed machining. On the other hand as disadvantage high speed machining involves shortening the life of cutting tool. In this research we want to evaluate the performance of appropriate endmill for high speed machining in accordance with surface roughness of land width and clearance angle of flat-endmill

  • PDF

선삭 가공면의 변형에 관한 절삭모델에 대한 연구 (A Study on Cutting Model for the Plastic Deformation on Turning Operation)

  • 차일남;김윤제
    • 한국정밀공학회지
    • /
    • 제5권1호
    • /
    • pp.29-39
    • /
    • 1988
  • Plastically deformed layer beneath metal surface machined by orthogonal cutting was evaluated in terms of residual stress, microvickers hardness, side spread, and the side strain. An attempt was made to predict the depth of layer according to machining conditions particularly tool geometry and the shear plane angle. In this paper, we employed two models concerning the sliplines. The exact model was validated by comparision of computed and measured tool force and its angle, and the model offers an upper boundary of the deformed layer to be in good agreement with the experiment.

  • PDF

CFRTP 소재 가공을 위한 초음파 나이프 적용 가능성에 관한 연구 (A Study on the applicability of ultrasonic knife for processing CFRTP materials)

  • 송기혁;김혜진;박지영;성시명
    • Design & Manufacturing
    • /
    • 제17권2호
    • /
    • pp.9-14
    • /
    • 2023
  • In this study, an experiment was conducted to confirm the applicability of the external shape control of the ultrasonic knife to the CFRTP material, which is the base material of thermoplastic. TC910 based on polyamide6 (PA6) was used as the material. The slope 와 and tool transfer speed of the material and tool were selected as process factors for processing, and the following results were obtained. Under all cutting conditions using an ultrasonic knife, friction heat caused by high-frequency vibration was issued at 150℃ at the contact part between the material and the knife during cutting. As a result of the cutting force analysis, the faster the transfer speed, the higher the cutting force as the angle of entry of the blade increased, and the size of the cutting force changed during cutting. As for the size of the burr in accordance with the transfer speed condition, the smallest burr occurred at 150mm/min in the side part, and the smallest burr occurred at 150mm/min and 200mm/min in the case of the outlet burr. The size of the burr according to the entry angle tended to decrease as the tool entry angle increased, and the side part tended to increase as the tool entry angle increased. As a result of the cutting surface analysis, it was confirmed that the base material was eluted under all conditions, and the faster the transfer speed, the lower the elution phenomenon of the base material. Based on the above results, cutting the CFRTP material with an ultrasonic knife is possible, but the effect on heat generation caused by friction needs to be minimized, and further research needs to be conducted on this.