• Title/Summary/Keyword: Tone spacing

Search Result 13, Processing Time 0.02 seconds

Effect of Modulation Frequency of Power Amplifier on IMD Cancellation Performance of Predistortion Linearizer (RF 전치 왜곡된 전력 증폭기의 변조 주파수가 혼변조 개선량에 미치는 영향)

  • 최진철;조경준;김상희;김종현;이병제;김남영;이종철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.5
    • /
    • pp.450-457
    • /
    • 2003
  • In this paper, we studied the effect of asymmetrical 3rd order IMD of power amplifier due to changes in modulation frequency on IMD cancellation performance. The phase extraction method for determining asymmetric rate for phase distortion of IMD is proposed and the phase difference between lower and upper 3rd order IMD is measured by this method. The phase compensation circuit to decrease the phase difference is also designed and fabricated. From the measurement results using the phase compensation circuit applied to 5 W RF power amplifier fur PCS applications, the 3rd order IMD cancellation performance can be achieved up to 2-tone spacing 1.5 MHz (phase difference within 10$^{\circ}$).

Design of Next Generation Amplifiers Using Nanowire FETs

  • Hamedi-Hagh, Sotoudeh;Oh, Soo-Seok;Bindal, Ahmet;Park, Dae-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.566-570
    • /
    • 2008
  • Vertical nanowire SGFETs(Surrounding Gate Field Effect Transistors) provide full gate control over the channel to eliminate short channel effects. This paper presents design and characterization of a differential pair amplifier using NMOS and PMOS SGFETs with a 10nm channel length and a 2nm channel radius. The amplifier dissipates $5{\mu}W$ power and provides 5THz bandwidth with a voltage gain of 16, a linear output voltage swing of 0.5V, and a distortion better than 3% from a 1.8V power supply and a 20aF capacitive load. The 2nd and 3rd order harmonic distortions of the amplifier are -40dBm and -52dBm, respectively, and the 3rd order intermodulation is -24dBm for a two-tone input signal with 10mV amplitude and 10GHz frequency spacing. All these parameters indicate that vertical nanowire surrounding gate transistors are promising candidates for the next generation high speed analog and VLSI technologies.

Calculation Model of Time Varying Loudness by Using the Critical-banded Filters (임계 대역 필터를 이용한 과도음의 라우드니스 계산 모델)

  • Jeong, Hyuk;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.65-70
    • /
    • 2000
  • It is blown that the loudness is one of the most important metrics in assessing the sound quality and a calculation method for loudness has been standardized for steady sounds. In this study, a new loudness model is suggested for dealing with the transient sound for a unified analysis of various practical sounds. A signal processing technique is introduced for this purpose, which is required for the band subdivision and the prediction of band-level change of transient sounds. In addition, models for the post-masking and the temporal integration are adopted in the analysis of the loudness of transient sounds. In order to solve the problem of the conventional loudness model in the pure-tone signal processing, a critical band filter is employed in the analysis, which consists of 47 critical filters having a filter spacing of a half of the critical bandwidth. For testing the effectiveness of the present model, the predicted responses are compared with the experimental data and it is observed that they are in good agreements.

  • PDF