• 제목/요약/키워드: Tomography Scanner, X-Ray Computed

Search Result 20, Processing Time 0.026 seconds

The Value of Preoperative Multidetector Computed Tomography for Deep Inferior Epigastric Artery Perforator Free Flap (심하복벽동맥 천공지 유리피판에서 술전 MDCT의 유용성)

  • Heo, Chan Yeong;Hong, Ki Yong;Yoon, Chang Jin;Eun, Seok Chan;Baek, Rong Min;Minn, Kyung Won
    • Archives of Plastic Surgery
    • /
    • v.36 no.2
    • /
    • pp.140-146
    • /
    • 2009
  • Purpose: Autologous breast reconstruction with abdominal tissue is one of the best options after mastectomy. In a free transverse rectus abdominis myocutaneous(TRAM) or deep inferior epigastric artery perforator(DIEP) flap, a preoperative evaluation of the precise location of perforating vessels and vascular run - off systems is required. The objective of this report is to demonstrate the usefulness of multidetector computed tomography(MDCT) in the preoperative planning of patients undergoing breast reconstruction with abdominal flap. Methods: From June 2006 to January 2008, 28 patients underwent MDCT evaluation before breast reconstruction. All subjects were females with an age range of 30 to 55 years. The CT scan was performed using a 64 - slice MDCT scanner(Brilliance 64; Philips Medical Systems, Best, Netherlands). Results: One perforator or two major perforators were marked on image in good relation with a hand - held Doppler examination and intraoperative findings. All vascular run - off systems were cleared before operation. Conclusion: Preoperative evaluation of perforator arteries with MDCT angiography is beneficial in patients undergoing breast reconstruction. This technique provides a noninvasive approach of the vascular anatomy of the entire anterior abdominal wall.

Comparison of Volumes between Four-Dimensional Computed Tomography and Cone-Beam Computed Tomography Images using Dynamic Phantom (호흡동조전산화단층촬영과 콘빔전산화단층촬영의 팬텀 영상 체적비교)

  • Kim, Seong-Eun;Won, Hui-Su;Hong, Joo-Wan;Chang, Nam-Jun;Jung, Woo-Hyun;Choi, Byeong-Don
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.2
    • /
    • pp.123-130
    • /
    • 2016
  • Purpose : The aim of this study was to compare the differences between the volumes acquired with four-dimensional computed tomography (4DCT)images with a reconstruction image-filtering algorithm and cone-beam computed tomography (CBCT) images with dynamic phantom. Materials and Methods : The 4DCT images were obtained from the computerized imaging reference systems (CIRS) phantom using a computed tomography (CT) simulator. We analyzed the volumes for maximum intensity projection (MIP), minimum intensity projection (MinIP) and average intensity projection (AVG) of the images obtained with the 4DCT scanner against those acquired from CBCT images with CT ranger tools. Results : Difference in volume for node of 1, 2 and 3 cm between CBCT and 4DCT was 0.54~2.33, 5.16~8.06, 9.03~20.11 ml in MIP, respectively, 0.00~1.48, 0.00~8.47, 1.42~24.85 ml in MinIP, respectively and 0.00~1.17, 0.00~2.19, 0.04~3.35 ml in AVG, respectively. Conclusion : After a comparative analysis of the volumes for each nodal size, it was apparent that the CBCT images were similar to the AVG images acquired using 4DCT.

  • PDF

Development and Performance Evaluation of the First Model of 4D CT-Scanner

  • Endo, Masahiro;Mori, Shinichiro;Tsunoo, Takanori;Kandatsu, Susumu;Tanada, Shuji;Aradate, Hiroshi;Saito, Yasuo;Miyazaki, Hiroaki;Satoh, Kazumasa;Matsusita, Satoshi;Kusakabe, Masahiro
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.373-375
    • /
    • 2002
  • 4D CT is a dynamic volume imaging system of moving organs with an image quality comparable to conventional CT, and is realized with continuous and high-speed cone-beam CT. In order to realize 4D CT, we have developed a novel 2D detector on the basis of the present CT technology, and mounted it on the gantry frame of the state-of-the-art CT-scanner. In the present report we describe the design of the first model of 4D CT-scanner as well as the early results of performance test. The x-ray detector for the 4D CT-scanner is a discrete pixel detector in which pixel data are measured by an independent detector element. The numbers of elements are 912 (channels) ${\times}$ 256 (segments) and the element size is approximately 1mm ${\times}$ 1mm. Data sampling rate is 900views(frames)/sec, and dynamic range of A/D converter is 16bits. The rotation speed of the gantry is l.0sec/rotation. Data transfer system between rotating and stationary parts in the gantry consists of laser diode and photodiode pairs, and achieves net transfer speed of 5Gbps. Volume data of 512${\times}$512${\times}$256 voxels are reconstructed with FDK algorithm by parallel use of 128 microprocessors. Normal volunteers and several phantoms were scanned with the scanner to demonstrate high image quality.

  • PDF

The experimental study of the effect of the hybrid instrumentation method with ProTaper and ProFile on the change of root canal area and distance from the canal to the root surface after canal shaping. (ProTaper와 ProFile을 사용한 Hybrid instrumentation method의 근관 형성 전, 후 근관 단면적과 근관벽에서 치근외면까지 최단거리의 변화에 미치는 영향에 대한 실험적 연구)

  • Kim, Seok-Min;Park, Dong-Sung
    • The Journal of the Korean dental association
    • /
    • v.45 no.6 s.457
    • /
    • pp.362-369
    • /
    • 2007
  • The aim of this study was to investigate the effect of the hybrid instrumentation method with ProTaper and ProFile on the change of root canal area and distance from the canal to the root surface after canal shaping. The mesial canals of twenty extracted mandibular first molars having $10-20^{\circ}\Delta$ curvature were scanned using X-ray microcomputed tomography (XMCT)-scanner before root canals were instrumented. They were divided into four groups (n=10 canals ter group). In Group 1, root canals were instrumented by the step-back technique with stainless steel K-Flexofile after coronal flaring. The remainders were instrumented by the crown-down technique with, ProTaper system (Group 2), ProFile (Group 3) or ProTaper (Group 4). All canals were prepared up to size 25 at the end-point of preparation and scanned again. Pre- and post-operative cross-sectional images of 1, 3, 5, and 7 mm from the apical foramen were compared. For each level, change of cross-sectional canal are and distance to the nearest external root surface was calculated using Adobe Photoshop 6.0 and image software program. In the change of cross-sectional area, Group 4 was less than Group 2 at 3 mm and 5 mm level (p<0.05). In the difference of the distance from the canal to the root surface after canal shaping, Group 4 was least among the other groups at 7 mm level (p<0.05). According to the results, the methods using ProFile or K file only and the hybrid instrumentation technique using ProTaper and ProFile are more appropriate methods of canal preparation than ProTaper system for narrow of curved canals.

  • PDF

Comparison of CT numbers between cone-beam CT and multi-detector CT (Cone-beam CT와 multi-detector CT영상에서 측정된 CT number에 대한 비교연구)

  • Kim, Dong-Soo;Han, Won-Jeong;Kim, Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.40 no.2
    • /
    • pp.63-68
    • /
    • 2010
  • Purpose : To compare the CT numbers on 3 cone-beam CT (CBCT) images with those on multi-detector CT (MDCT) image using CT phantom and to develop linear regressive equations using CT numbers to material density for all the CT scanner each. Materials and Methods : Mini CT phantom comprised of five 1 inch thick cylindrical models with 1.125 inches diameter of materials with different densities (polyethylene, polystyrene, plastic water, nylon and acrylic) was used. It was scanned in 3 CBCTs (i-CAT, Alphard VEGA, Implagraphy SC) and 1 MDCT (Somatom Emotion). The images were saved as DICOM format and CT numbers were measured using OnDemand 3D. CT numbers obtained from CBCTs and MDCT images were compared and linear regression analysis was performed for the density, $\rho$ ($g/cm^3$), as the dependent variable in terms of the CT numbers obtained from CBCTs and MDCT images. Results : CT numbers on i-CAT and Implagraphy CBCT images were smaller than those on Somatom Emotion MDCT image (p<0.05). Linear relationship on a range of materials used for this study were $\rho$=0.001H+1.07 with $R^2$ value of 0.999 for Somatom Emotion, $\rho$=0.002H+1.09 with $R^2$ value of 0.991 for Alphard VEGA, $\rho$=0.001H+1.43 with $R^2$ value of 0.980 for i-CAT and $\rho$=0.001H+1.30 with $R^2$ value of 0.975 for Implagraphy. Conclusion: CT numbers on i-CAT and Implagraphy CBCT images were not same as those on Somatom Emotion MDCT image. The linear regressive equations to determine the density from the CT numbers with very high correlation coefficient were obtained on three CBCT and MDCT scan.

The Clinical Experience of Computed Tomographic-Guided Navigation System in C1-2 Spine Instrumentation Surgery

  • Kim, Sang-Uk;Roh, Byoung-Il;Kim, Seong-Joon;Kim, Sang-Don
    • Journal of Korean Neurosurgical Society
    • /
    • v.56 no.4
    • /
    • pp.330-333
    • /
    • 2014
  • Objective : To identify the accuracy and efficiency of the computed tomographic (CT)-based navigation system on upper cervical instrumentation, particularly C1 lateral mass and C2 pedicle screw fixation compared to previous reports. Methods : Between May 2005 and March 2014, 25 patients underwent upper cervical instrumentation via a CT-based navigation system. Seven patients were excluded, while 18 patients were involved. There were 13 males and five females; resulting in four degenerative cervical diseases and 14 trauma cases. A CT-based navigation system and lateral fluoroscopy were used during the screw instrumentation procedure. Among the 58 screws inserted as C1-2 screws fixation, their precise positions were evaluated by postoperative CT scans and classified into three categories : in-pedicle, non-critical breach, and critical breach. Results : Postoperatively, the precise positions of the C1-2 screws fixation were 81.1% (47/58), and 8.6% (5/58) were of non-critical breach, while 10.3% (6/58) were of critical breach. Most (5/6, 83.3%) of the critical breaches and all of non-critical breaches were observed in the C2 pedicle screws and there was only one case of a critical breach among the C1 lateral mass screws. There were three complications (two vertebral artery occlusions and a deep wound infection), but no postoperative instrument-related neurological deteriorations were seen, even in the critical breach cases. Conclusion : Although CT-based navigation systems can result in a more precise procedure, there are still some problems at the upper cervical spine levels, where the anatomy is highly variable. Even though there were no catastrophic complications, more experience are needed for safer procedure.

Intraoral Scan for Virtual Skull-Dentition Hybrid Images of Young Patients (가상 골격-치열 하이브리드 이미지 생성을 위한 구강 스캐너의 활용)

  • Lee, Joohee;Yang, ByoungEun;Lee, Hyelim
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.1
    • /
    • pp.57-64
    • /
    • 2022
  • Additional dentition images are needed because the dentitions are distorted in cone-beam computed tomography (CBCT) due to streak artifacts and non-uniformity of the x-ray beam. The purpose of this study is to evaluate the feasibility of improving the dentition image of CBCT scan with intraoral scanner instead of plaster models. Maxilla images from plaster models, two intraoral scanners, and CBCT of 20 patients aged 12 to 18 were used in this study. With one of the intraoral scanners, the full arch was scanned by three segments and combined into a complete full arch. Virtual skull-dentition hybrid images from intraoral scanners were superimposed with the images from plaster models to evaluate the coordinate value difference and distance at reference points. The results showed that the coordinate value difference and distance were smallest with segmented intraoral scan, which showed only 2 ㎛ distance. Intraoral scan may provide good dentition images for virtual skull-dentition images.

Radiologic study of the healing process of the extracted socket of beagle dogs using cone beam CT (Cone beam CT를 이용한 비글견 발치창 치유과정에 대한 방사선학적 연구)

  • Choi, Dong-Hoon;Lee, Wan;Kim, De-Sok;Lee, Byung-Do
    • Imaging Science in Dentistry
    • /
    • v.39 no.1
    • /
    • pp.19-25
    • /
    • 2009
  • Purpose: To longitudinally observe the healing process of extracted socket and the alterations of the residual ridge in healthy adult dogs using cone beam CT (CBCT). Materials and Methods: The mandibular premolars of two beagle dogs were removed and the extraction sites were covered with the gingival tissue. CBCTs (3D X-ray CT scanner, Alphard vega, Asahi Co.) were taken at baseline and at 1 week interval for 12 weeks. Radiographic density of extracted wounds was measured on normalized images with a custom-made image analysis program. The amount of alveolar crestal resorption after the teeth extraction was measured with a reformatted three-dimensional image using CBCT. Bony healing pattern of extracted wound of each group was also longitudinally observed and analyzed. Results: Dimensional changes occurred during the first 6 weeks following the extraction of dogs' mandibular premolars. The reduction of the height of residual ridge was more pronounced at the buccal than at the lingual aspect of the extraction socket. Radiographic density of extracted wounds increased by week 4, but the change in density stabilized after week 6. New bone formation was observed at the floor and the peripheral side of extracted socket from week 1. The entrance of extracted socket was sealed by a hard-tissue bridge at week 5. Conclusion: The healing process of extracted wound involved a series of events including new bone formation and residual ridge resorption.

  • PDF

Research of z-axis geometric dose efficiency in multi-detector computed tomography (MDCT 장치의 z-축 기하학적 선량효율에 관한 연구)

  • Kim, You-Hyun;Kim, Moon-Chan
    • Journal of radiological science and technology
    • /
    • v.29 no.3
    • /
    • pp.167-175
    • /
    • 2006
  • With the recent prevalence of helical CT and multi-slice CT, which deliver higher radiation dose than conventional CT due to overbeaming effect in X-ray exposure and interpolation technique in image reconstruction. Although multi-detector and helical CT scanner provide a variety of opportunities for patient dose reduction, the potential risk for high radiation levels in CT examination can't be overemphasized in spite of acquiring more diagnostic information. So much more concerns is necessary about dose characteristics of CT scanner, especially dose efficient design as well as dose modulation software, because dose efficiency built into the scanner's design is probably the most important aspect of successful low dose clinical performance. This study was conducted to evaluate z-axis geometric dose efficiency in single detector CT and each level multi-detector CT, as well as to compare z-axis dose efficiency with change of technical scan parameters such as focal spot size of tube, beam collimation, detector combination, scan mode, pitch size, slice width and interval. The results obtained were as follows ; 1. SDCT was most highest and 4 MDCT was most lowest in z-axis geometric dose efficiency among SDCT, 4, 8, 16, 64 slice MDCT made by GE manufacture. 2. Small focal spot was 0.67-13.62% higher than large focal spot in z-axis geometric dose efficiency at MDCT. 3. Large beam collimation was 3.13-51.52% higher than small beam collimation in z-axis geometric dose efficiency at MDCT. 4. Z-axis geometric dose efficiency was same at 4 slice MDCT in all condition and 8 slice MDCT of large beam collimation with change of detector combination, but was changed irregularly at 8 slice MDCT of small beam collimation and 16 slice MDCT in all condition with change of detector combination. 5. There was no significant difference for z-axis geometric dose efficiency between conventional scan and helical scan, and with change of pitch factor, as well as change of slice width or interval for image reconstruction. As a conclusion, for reduction of patient radiation dose delivered from CT examination we are particularly concerned with dose efficiency of equipment and have to select proper scanning parameters which increase z-axis geometric dose efficiency within the range of preserving optimum clinical information in MDCT examination.

  • PDF

Analysis of Set-up Errors during CT-scan, Simulation, and Treatment Process in Breast Cancer Patients (유방암 환자의 모의치료, CT 스캔 및 치료 과정에서 발생되는 준비 오차 분석)

  • Lee, Re-Na
    • Radiation Oncology Journal
    • /
    • v.23 no.3
    • /
    • pp.169-175
    • /
    • 2005
  • Purpose: Although computed tomography (CT) simulators are commonly used in radiation therapy department, many Institution still use conventional CT for treatments. In this study the setup errors that occur during simulation, CT scan (diagnostic CT scanner), and treatment were evaluated for the twenty one breast cancer patients. Materials and Methods: Errors were determined by calculating the differences in isocenter location, SSD, CLD, and locations of surgical clips implanted during surgery. The anatomic structures on simulation film and DRR image were compared to determine the movement of isocenter between simulation and CT scan. The isocetner point determined from the radio-opaque wires placed on patient's surface during CT scan was moved to new position if there was anatomic mismatch between the two images Results: In 7/21 patients, anatomic structures on DRR Image were different from the simulation Image thus new isocenter points were placed for treatment planning. The standard deviations of the diagnostic CT setup errors relative to the simulator setup in lateral, longitudinal, and anterior-posterior directions were 2.3, 1.6, and 1.6 mm, respectively. The average variation and standard deviation of SSD from AP field were 1.9 mm and 2.3 mm and from tangential fields were 2.8 mm and 3.7 mm. The variation of the CLD for the 21 patients ranged from 0 to 6 mm between simulation and DRR and 0 to 5 mm between simulation and treatment. The group systematic errors analyzed based on clip locations were 1.7 mm in lateral direction, 2.1 mm in AP direction, and 1.7 mm in SI direction. Conclusion: These results represent that there was no significant differences when SSD, CLD, clips' locations and isocenter locations were considered. Therefore, it is concluded that when a diagnostic CT scanner is used to acquire an image, the set-up variation is acceptable compared to using CT simulator for the treatment of breast cancer. However, the patient has to be positioned with care during CT scan in order to reduce the setup error between simulation and CT scan.