• Title/Summary/Keyword: TomoDirect

Search Result 8, Processing Time 0.036 seconds

Evaluation of Tangential Fields Technique Using TOMO Direct Radiation Therapy after Breast Partial Mastectomy (유방 부분 절제술 후 방사선 치료 시 TOMO Direct를 이용한 접선 조사의 선량적 유용성에 관한 고찰)

  • Kim, Mi-Jung;Kim, Joo-Ho;Kim, Hun-Kyum;Cho, Kang-Chul;Chun, Byeong-Chul;Cho, Jeong-Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.1
    • /
    • pp.59-66
    • /
    • 2011
  • Purpose: Investigation of the clinical use of tangential fields technique using TOMO direct in comparison to conventional LINAC based radiation therapy after breast partial mastectomy. Materials and Methods: Treatment plans were created for 3 left-sided breast cancer patients who had radiation therapy after breast partial mastectomy by using wedged tangential fields technique, field in field technique (FIF), TOMO Direct, TOMO Direct intensity modulated radiation therapy (IMRT) under the normalized prescription condition ($D_{90%}$: 50.4 Gy/28 fx within CTV). Dose volume histogram (DVH) and isodose curve were used to evaluate the dose to the clinical target volume (CTV), organ at risk (OAR). We compared and analyzed dosimetric parameters of CTV and OAR. Dosimetric parameters of CTV are $D_{99}$, $D_{95}$, Dose homogeneity index (DHI: $D_{10}/D_{90}$) and $V_{105}$, $V_{110}$. And dosimetric parameters of OAR are $V_{10}$, $V_{20}$, $V_{30}$, $V_{40}$ of the heart and $V_{10}$, $V_{20}$, $V_{30}$ of left lung. Results: Dosimetric results of CTV, the average value of $D_{99}$, $D_{95}$ were $47.7{\pm}1.1Gy$, $49.4{\pm}0.1Gy$ from wedged tangential fields technique (W) and FIF (F) were $47.1{\pm}0.6Gy$, $49.2{\pm}0.4Gy$. And it was $49.2{\pm}0.4$ vs. $48.6{\pm}0.8Gy$, $49.9{\pm}0.4$ vs. $49.5{\pm}0.3Gy$ Gy for the TOMO Direct (D) and TOMO Direct IMRT (I). The average value of dose homogeneity index was W: $1.1{\pm}0.02$, F: $1.07{\pm}0.02$, D: $1.03{\pm}0.001$, I: $1.05{\pm}0.02$. When we compared the average value of $V_{105}$, $V_{110}$ using each technique, it was the highest as $34.6{\pm}9.3%$, $7.5{\pm}7.9%$ for wedged tangential fields technique and the value dropped for FIF as $16.5{\pm}14.8%$, $2.1{\pm}3.5%$, TOMO direct IMRT as $7.5{\pm}8.3%$, $0.1{\pm}0.1%$ and the TOMO direct showed the lowest values for both as 0%. Dosimetric results of OAR was no significant difference among each technique. Conclusion: TOMO direct provides improved target dose homogeneity over wedged tangential field technique. It is no increase the amount of normal tissue volumes receiving low doses, as oppose to IMRT or Helical TOMO IMRT. Also, it simply performs treatment plan procedure than FIF. TOMO Direct is a clinical useful technique for breast cancer patients after partial mastectomy.

  • PDF

Evaluation of superficial dose for Postmastectomy using several treatment techniques (유방전절제술을 시행한 환자에서 치료기법에 따른 피부선량 평가)

  • Song, Yong Min;Choi, Ji Min;Kim, Jin Man;Kwon, Dong Yeol;Kim, Jong Sik;Cho, Hyun Sang;Song, Ki Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.225-232
    • /
    • 2014
  • Purpose : The purpose of this study was to evaluate the surface and superficial dose for patients requiring postmastectomy radiation therapy(PMRT) with different treatment techniques. Materials and Methods : Computed tomography images were acquired for the phantom(I'mRT, IBA) consisting of tissue equivalent material. Hypothetical chestwall and lung were outlined and modified. Five treatment techniques(Wedged Tangential; WT, 4-field IMRT, 7-field IMRT, TOMO DIRECT, TOMO HELICAL) were evaluated using only 6MV photon beam. GafChromic EBT3 film was used for dose measurements at the surface and superficial dose. Surface dose profiles around the phantom were obtained for each treatment technique. For superficial dose measurements, film were used inside the phantom and analyzed superficial region for depth from 1-6mm. Results : TOMO DIRECT showed the highest surface dose by 47~70% of prescribed dose, while 7-field IMRT showed the lowest by 35~46% of prescribed dose. For the WT, 4-field IMRT and 7-field IMRT, superficial dose were measured over 60%, 70%, and 80% for 1mm, 2mm, and 5mm depth, respectively. In case of TOMO DIRECT and TOMO HELICAL, over 75%, 80%, and 90% of prescribed dose was measured, respectively. Surface and superficial dose range were uniform in overall chestwall for the 7-field IMRT and TOMO HELICAL. In contrast, Because of the dose enhancement effect with oblique incidence, The dose was gradually increased toward the obliquely tangential angle for the WT and TOMO DIRECT. Conclusion : For PMRT, TOMO DIRECT and TOMO HELICAL deliver the higher surface and superficial doses than treatment techniques based linear accelerator. It showed adequate dose(over 75% of prescribed dose) at 1mm depth in skin region.

Customized 3D Printed Bolus for Breast Reconstruction for Modified Radical Mastectomy (MRM)

  • Ha, Jin-Suk;Jung, Jae Hong;Kim, Min-Joo;Jeon, Mi Jin;Jang, Won Suk;Cho, Yoon Jin;Lee, Ik Jae;Kim, Jun Won;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.196-202
    • /
    • 2016
  • We aim to develop the breast bolus by using a 3D printer to minimize the air-gap, and compare it to commercial bolus used for patients undergoing reconstruction in breast cancer. The bolus-shaped region of interests (ROIs) were contoured at the surface of the intensity-modulated radiation therapy (IMRT) thorax phantom with 5 mm thickness, after which the digital imaging and communications in mdicine (DICOM)-RT structure file was acquired. The intensity-modulated radiation therapy (Tomo-IMRT) and direct mode (Tomo-Direct) using the Tomotherapy were established. The 13 point doses were measured by optically stimulated luminescence (OSLD) dosimetry. The measurement data was analyzed to quantitatively evaluate the applicability of 3D bolus. The percentage change of mean measured dose between the commercial bolus and 3D-bolus was 2.3% and 0.7% for the Tomo-direct and Tomo-IMRT, respectively. For air-gap, range of the commercial bolus was from 0.8 cm to 1.5 cm at the periphery of the right breast. In contrast, the 3D-bolus have occurred the air-gap (i.e., 0 cm). The 3D-bolus for radiation therapy reduces the air-gap on irregular body surface that believed to help in accurate and precise radiation therapy due to better property of adhesion.

Evaluation of Treatment Planning for Head Tilting in WBRT 3D-CRT by TomoDirect mode: a Phantom Study (토모다이렉트를 이용한 3차원 전뇌 방사선치료에서 두상 각도에 따른 치료계획평가: 팬톰 실험)

  • Dae-Gun, Kim;Sang-Hyun, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.857-862
    • /
    • 2022
  • The purpose of this study was to evaluate a three-dimensional conformal radiotherapy (3D-CRT) treatment plan with regard to head tilting in whole-brain radiotherapy (WBRT) using TomoDirect (TD) mode in Tomotherapy. WBRT 3D-CRT by TD was compared for a total of five head tilt angles (-20°, -10°, 0°. +10° and +20°). The dose homogeneity index (HI) and prescription dose index (CI) were calculated to confirm the target coverage. The maximum and average doses for critical organs such as the lens, eyeball and parotid glands were calculated for different angles of head tilting. The HI and CI were closet to the result value of 1 at the head tilted angle +10° and +20°. At a head tilted angle of +10°, the dose to the lens and eyeballs decreased by about 74% and about 30%, when compared with the reference angle (0°), respectively. The results of this study suggest that a head angle of +10 with chin-up would save adequate target coverage and reduce exposure dose to the lens.

Evaluation of Ovary Dose for woman of Childbearing age Woman with Breast cancer in tomotherapy (가임기 여성의 유방암 토모치료 시 난소선량 평가비교)

  • Lee, Soo Hyeung;Park, Soo Yeun;Choi, Ji Min;Park, Ju Young;Kim, Jong Suk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.337-343
    • /
    • 2014
  • Purpose : The aim of this study is to evaluate unwanted scattered dose to ovary by scattering and leakage generated from treatment fields of Tomotherapy for childbearing woman with breast cancer. Materials and Methods : The radiation treatments plans for left breast cancer were established using Tomotherapy planning system (Tomotherapy, Inc, USA). They were generated by using helical and direct Tomotherapy methods for comparison. The CT images for the planning were scanned with 2.5 mm slice thickness using anthropomorphic phantom (Alderson-Rando phantom, The Phantom Laboratory, USA). The measurement points for the ovary dose were determined at the points laterally 30 cm apart from mid-point of treatment field of the pelvis. The measurements were repeated five times and averaged using glass dosimeters (1.5 mm diameter and 12 mm of length) equipped with low-energy correction filter. The measures dose values were also converted to Organ Equivalent Dose (OED) by the linear exponential dose-response model. Results : Scattered doses of ovary which were measured based on two methods of Tomo helical and Tomo direct showed average of $64.94{\pm}0.84mGy$ and $37.64{\pm}1.20mGy$ in left ovary part and average of $64.38{\pm}1.85mGy$ and $32.96{\pm}1.11mGy$ in right ovary part. This showed when executing Tomotherapy, measured scattered dose of Tomo Helical method which has relatively greater monitor units (MUs) and longer irradiation time are approximately 1.8 times higher than Tomo direct method. Conclusion : Scattered dose of left and right ovary of childbearing women is lower than ICRP recommended does which is not seriously worried level against the infertility and secondary cancer occurrence. However, as breast cancer occurrence ages become younger in the future and radiation therapy using high-precision image guidance equipment like Tomotherapy is developed, clinical follow-up studies about the ovary dose of childbearing women patients would be more required.

Evaluations and Comparisons of Body Surface Doses during Breast Cancer Treatment by Tomotherapy and LINAC Radiotherapy Devices

  • Lee, Hyun-Jik;Bae, Sun-Hyun;Cho, Kwang Hwan;Jeong, Jae-Hong;Kwon, Su-Il;Lee, Kil-Dong
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.218-225
    • /
    • 2017
  • Effects on skin caused by the dose from linear accelerator (LINAC) opposing portal irradiation and TomoDirect 3-D modeling treatment according to the radiation devices and treatment methods were measured, and a comparative analysis was performed. Two groups of 10 patients each were created and measurements were carried out using an optically stimulated luminescence dosimeter. These patients were already receiving radiation treatment in the hospital. Using the SPSS statistical program, the minimum and maximum average standard deviations of the measured skin dose data were obtained. Two types of treatment method were selected as independent variables; the measured points and total average were the dependent variables. An independent sample T-test was used, and it was checked whether there was a significance probability between the two groups. The average of the measured results for the LINAC opposing portal radiation was 117.7 cGy and PDD 65.39% for the inner breast, 144.7 cGy and PDD 80.39% for the outer breast, 143.2 cGy and PDD 79.56% for the upper breast, 151.4 cGy and PDD 84.11% for the lower breast, 149.6 cGy and PDD 83.11% for the axilla, and 141.32 cGy and PDD 78.51% for the total average. In contrast, for TomoDirect 3-D conformal radiotherapy, the corresponding measurement values were 137.6 cGy and PDD 76.44%, 152.3 cGy and PDD 84.61%, 148.6 cGy and PDD 82.56%, 159.7 cGy and PDD 88.72%, and 148.6 cGy PDD 82.56%, respectively, and the total average was 149.36 cGy and PDD 82.98%. To determine if the difference between the total averages was statistically significant, the independent sample T-test of the SPSS statistical program was used, which indicated that the P-value was P=0.024, which was 0.05 lower than the significance level. Thus, it can be understood that the null hypothesis can be dismissed, and that there was a difference in the averages. In conclusion, even though the treatment dose was similar, there could be a difference in the dose entering the body surface from the radiation treatment plan; however, depending on the properties of the treatment devices, there is a difference in the dose affecting the body surface. Thus, the absorbed dose entering the body surface can be high. During breast cancer radiotherapy, radiation dermatitis occurs in almost all patients. Most patients have a difficult time while undergoing treatment, and therefore, when choosing a radiotherapy treatment method, minimizing radiation dermatitis is an important consideration.

Clinical Application Analysis of 3D-CRT Methods Using Tomotherapy (토모테라피를 이용한 3차원 입체 조형 치료의 임상적 적용 분석)

  • Cho, Kang-Chul;Kim, Joo-Ho;Kim, Hun-Kyum;Ahn, Seung-Kwon;Lee, Sang-Kyoo;Yoon, Jong-Won;Cho, Jeong-Hee;Lee, Jong-Seok;Yoo, Beong-Gyu
    • Journal of radiological science and technology
    • /
    • v.36 no.4
    • /
    • pp.327-335
    • /
    • 2013
  • This study investigates the case of clinical application for TomoDirect 3D-CRT(TD-3D) and TomoHelical 3D-CRT(TH-3D) with evaluating dose distribution for clinical application in each case. Treatment plans were created for 8 patients who had 3 dimensional conformal radiation therapy using TD-3D and TH-3D mode. Each patients were treated for sarcoma, CSI(craniospinal irradiaion), breast, brain, pancreas, spine metastasis, SVC syndrome and esophagus. DVH(dose volume histogram) and isodose curve were used for comparison of each treatment modality. TD-3D shows better dose distribution over the irradiation field without junction effect because TD-3D was not influenced by target length for sarcoma and CSI case. In breast case, dosimetric results of CTV, the average value of D 99%, D 95% were $49.2{\pm}0.4$ Gy, $49.9{\pm}0.4$ Gy and V 105%, V 110% were 0%, respectively. TH-3D with the dosimetric block decreased dose of normal organ in brain, pancreas, spine metastasis case. SCV syndrome also effectively decreased dose of normal organ by using dose block to the critical organs(spinal cord <38 Gy). TH-3D combined with other treatment modalities was possible to boost irradiation and was total dose was reduced to spinal cord in esophagus case(spinal cord <45 Gy, lung V 20 <20%). 3D-CRT using Tomotherapy could overcomes some dosimetric limitations, when we faced Conventional Linac based CRT and shows clinically proper dose distribution. In conclusion, 3D-CRT using Tomotherapy will be one of the effective 3D-CRT techniques.

Rotation Errors of Breast Cancer on 3D-CRT in TomoDirect (토모다이렉트 3D-CRT을 이용한 유방암 환자의 회전 오차)

  • Jung, Jae Hong;Cho, Kwang Hwan;Moon, Seong Kwon;Bae, Sun Hyun;Min, Chul Kee;Kim, Eun Seog;Yeo, Seung-Gu;Choi, Jin Ho;Jung, Joo-Yong;Choe, Bo Young;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.6-11
    • /
    • 2015
  • The purpose of this study was to analyze the rotational errors of roll, pitch, and yaw in the whole breast cancer treated by the three-dimensional radiation therapy (3D-CRT) using TomoDirect (TD). Twenty-patient previously treated with TD 3D-CRT was selected. We performed a retrospective clinical analysis based on 80 images of megavoltage computed tomography (MVCT) including the systematic and random variation with patient setup errors and treatment setup margin (mm). In addition, a rotational error (degree) for each patient was analyzed using the automatic image registration. The treatment margin of X, Y, and Z directions were 4.2 mm, 6.2 mm, and 6.4 mm, respectively. The mean value of the rotational error for roll, pitch, and yaw were $0.3^{\circ}$, $0.5^{\circ}$, $0.1^{\circ}$, and all of systematic and random error was within $1.0^{\circ}$. The errors of patient positioning with the Y and Z directions have generally been mainly higher than the X direction. The percentage in treatment fractions in less than $2^{\circ}$ at roll, pitch, and yaw are 95.1%, 98.8%, and 97.5%, respectively. However, the edge of upper and lower (i.e., bottom) based on the center of therapy region (point) will quite a possibility that it is expected to twist even longer as the length of treatment region. The patient-specific characters should be considered for the accuracy and reproducibility of treatment and it is necessary to confirm periodically the rotational errors, including patient repositioning and repeating MVCT scan.