• 제목/요약/키워드: Tomato greenhouse

Search Result 271, Processing Time 0.036 seconds

ERRATUM : Comparison of Measured and Calculated Carboxylation Rate, Electron Transfer Rate and Photosynthesis Rate Response to Different Light Intensity and Leaf Temperature in Semi-closed Greenhouse with Carbon Dioxide Fertilization for Tomato Cultivation (ERRATUM : 반밀폐형 온실 내에서 탄산가스 시비에 따른 광강도와 엽온에 반응한 토마토 잎의 최대 카복실화율, 전자전달율 및 광합성율 실측값과 모델링 방정식에 의한 예측값의 비교)

Monitoring of Benzimidazole Resistance in Botrytis cinerea Isolates from Strawberry in Korea and Development of Detection Method for Benzimidazole Resistance

  • Geonwoo Kim;Doeun Son;Sungyu Choi;Haifeng Liu;Youngju Nam;Hyunkyu Sang
    • The Plant Pathology Journal
    • /
    • v.39 no.6
    • /
    • pp.614-624
    • /
    • 2023
  • Botrytis cinerea is a major fungal plant pathogen that causes gray mold disease in strawberries, leading to a decrease in strawberry yield. While benzimidazole is widely used as a fungicide for controlling this disease, the increasing prevalence of resistant populations to this fungicide undermines its effectiveness. To investigate benzimidazole resistant B. cinerea in South Korea, 78 strains were isolated from strawberries grown in 78 different farms in 2022, and their EC50 values for benzimidazole were examined. As a result, 64 strains exhibited resistance to benzimidazole, and experimental tests using detached strawberry leaves and the plants in a greenhouse confirmed the reduced efficacy of benzimidazole to control these strains. The benzimidazole resistant strains identified in this study possessed two types of mutations, E198A or E198V, in the TUB2 gene. To detect these mutations, TaqMan probes were designed, enabling rapid identification of benzimidazole resistant B. cinerea in strawberry and tomato farms. This study utilizes TaqMan real-time polymerase chain reaction analysis to swiftly identify benzimidazole resistant B. cinerea, thereby offering the possibility of effective disease management by identifying optimum locations and time of application.

Field Survey on Smart Greenhouse (스마트 온실의 현장조사 분석)

  • Lee, Jong Goo;Jeong, Young Kyun;Yun, Sung Wook;Choi, Man Kwon;Kim, Hyeon Tae;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.27 no.2
    • /
    • pp.166-172
    • /
    • 2018
  • This study set out to conduct a field survey with smart greenhouse-based farms in seven types to figure out the actual state of smart greenhouses distributed across the nation before selecting a system to implement an optimal greenhouse environment and doing a research on higher productivity based on data related to crop growth, development, and environment. The findings show that the farms were close to an intelligent or advanced smart farm, given the main purposes of leading cases across the smart farm types found in the field. As for the age of farmers, those who were in their forties and sixties accounted for the biggest percentage, but those who were in their fifties or younger ran 21 farms that accounted for approximately 70.0%. The biggest number of farmers had a cultivation career of ten years or less. As for the greenhouse type, the 1-2W type accounted for 50.0%, and the multispan type accounted for 80.0% at 24 farms. As for crops they cultivated, only three farms cultivated flowers with the remaining farms growing only fruit vegetables, of which the tomato and paprika accounted for approximately 63.6%. As for control systems, approximately 77.4% (24 farms) used a domestic control system. As for the control method of a control system, three farms regulated temperature and humidity only with a control panel with the remaining farms adopting a digital control method to combine a panel with a computer. There were total nine environmental factors to measure and control including temperature. While all the surveyed farms measured temperature, the number of farms installing a ventilation or air flow fan or measuring the concentration of carbon dioxide was relatively small. As for a heating system, 46.7% of the farms used an electric boiler. In addition, hot water boilers, heat pumps, and lamp oil boilers were used. As for investment into a control system, there was a difference in the investment scale among the farms from 10 million won to 100 million won. As for difficulties with greenhouse management, the farmers complained about difficulties with using a smart phone and digital control system due to their old age and the utter absence of education and materials about smart greenhouse management. Those difficulties were followed by high fees paid to a consultant and system malfunction in the order.

Effects of Drip Irrigation Volumes on Plant Growth and Yield of Tomato Grown in Perlite (펄라이트 재배에서 급액량이 토마토의 생육과 수량에 미치는 영향)

  • Kim, Doo Han;Shawon, Md Rayhan Ahmed;An, Jin Hee;Lee, Hyoun Jin;Lee, Yun-Jae;Kim, Minkyung;Lee, Yong-Beom;Choi, Ki Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.300-310
    • /
    • 2022
  • The objective of this experiment was to investigate the effect of drip irrigation volume on tomatoes (Solanum lycopersicum L.) grown in a greenhouse using perlite medium. Plants were treated by three different irrigation treatment I0, I25, and I50 (where irrigation volume of I25 and I50 was 25% and 50% higher than I0, having limited or no leaching). Growth characteristics of plants, yield and water use efficiency were measured. The result showed that plant height, leaf length and leaf width were lowest in the I0 treated plants. However, these parameters were not statistically significant differences between the plants that were grown in the I25 and I50 treatment. Soluble solids content, acidity and dry matter of 111th, 132nd, and 143rd days harvested tomato were higher in the plants irrigated with lowest volume (I0) than the higher volume (I25 or I50). In addition, water content was lower in the 111th and 132nd days of harvested tomatoes from the I0 treatment. The number of big-size tomatoes (>180 g) was significantly higher in the I25 irrigated plants. There was no significant difference in the total number of harvested fruits among the treatments. The average fruit weight and total yield of harvested tomatoes were lowest in the I0 treated plants. The water consumption of tomato was not significantly different amongst the treatments but water use efficiency was lowest in the I0 treatment. Principal component analysis revealed that total soluble solid and acidity of tomato showed a positive correlation between each other. These results suggest that I25 was the optimum irrigation treatment for tomato based on its measured growth characteristics, yield and water use efficiency.

A New Disinfestation Approach Against Some Greenhouse Pests Using Ethyl Formate Fumigation (훈증제 에틸포메이트를 이용한 몇 가지 시설하우스 해충에 대한 새로운 방제 전략)

  • Kwon, Tae-Hyung;Jeong, In-Hong;Lee, Byung-Ho;Park, Chung Gyoo
    • Korean journal of applied entomology
    • /
    • v.58 no.4
    • /
    • pp.341-345
    • /
    • 2019
  • Ethyl formate (EF) is a rapid kill, environmentally safe, and low mammalian toxicity fumigant, registered to disinfest quarantine insect pests from imported agricultural products. A new concept for controlling insect pests of agricultural crops was tested in a fumigation chamber with EF. Control efficacy of and phyto-toxicity due to EF fumigation were evaluated against four pests (Thrips palmi, Bemisia tabaci, Myzus persicae, and Tetranychus urticae) and on seedlings of four fruit vegetables (FVs; yellow melon, cucumber, tomato, and pepper). Ethyl formate fumigation at a dose of 1.5 g m-3 for 12 h produced >93.3% mortality in T. palmi, B. tabaci, and M. persicae. However, T. urticae was tolerant to fumigation, showing only 20% mortality at 2.0 g m-3. In terms of concentration × time (CT) products, at least 8.9 g·h m-3 CT at 20 ± 1.5℃ was needed to achieve > 90% mortality against the three susceptible insect pests. Fumigation at 1.5 g m-3 for 12 h caused no phyto-toxicity to any of the four FV seedlings. Ethyl formate application, as a new disinfestation method in greenhouses, could be an alternative to reduce the use of conventional insecticides. However, further studies are needed to determine the efficacy of this method at different pest developmental stages and in different greenhouse environments. Additionally, research is needed to elucidate the phyto-toxicity of EF application at different growing stages of a wide variety of crops.

Optimum Management of Greenhouse Environment by the Shading Coat and Two-fluid Fogging System in Summer Season (차광제와 이류체 포그시스템을 이용한 고온기 시설내 환경관리)

  • Kim, Sung Eun;Lee, Jae Eun;Lee, Sang Don;Kim, Hak Sun;Chun, Hee;Jeong, Woo Ri;Lee, Moon Haeng;Kim, Young Shik
    • Journal of Bio-Environment Control
    • /
    • v.24 no.1
    • /
    • pp.34-38
    • /
    • 2015
  • This research was conducted to establish efficient methods to overcome high temperature and low humidity with light selective shading agent and two-fluid fogging system in greenhouses in hot season. There were four experimental treatments; not treated (Non), fogging by two-fluid fogging system (Fog), spraying onto the greenhouse surface with shading coating agent (Coat), and using fogging and coating together (F&C). The amount of solar radiation entered into the greenhouses was higher in Non, and then Fog, Coat, and F&C in descending order. Fog was more efficient to lower the air temperature and also raise relative humidity than Coat treatment. The crop temperature was about $6^{\circ}C$ higher in Control than the other treatments. F&C revealed as the most efficient method to control the environment inside the greenhouse, but fogging system seemed to be more economic. In stand-alone greenhouses spraying coating agent may be the appropriate choice because of their structural limitations, mainly eave height.

The Usage Status of Pesticides for Vegetables under Greenhouse Cultivation in the Southern Area of Korea (남부지역 시설채소 재배 농가의 농약 사용실태)

  • Lee, Mi-Gyung;Hwang, Jae-Moon;Lee, Su-Rae
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.4
    • /
    • pp.391-400
    • /
    • 2005
  • This study was undertaken to survey the pesticides used under the greenhouse cultivation of 9 vegetable crops including cucumber, tomato, strawberry, eggplant, hot pepper, paprika, lettuce, perilla leaves and green onion in the Southern area during the period of 2003-2004. The total number of farmers investigated was 202 which consisted of 124 conventional growers and 78 environment-friendly growers. The farmers were requested to record with respect to the crop's name, cultivation acreage, growing practices (conventional/environment-friendly), use purpose, pesticide kinds, usage quantity and application time of pesticides. The average usage quantity of pesticides for the 9 crops was 3.30 kg ai/ha in conventional growing and 0.47 kg ai/ha in environment-friendly growing. The average application time of pesticides was 11 times in conventional and 2 times in environment-friendly growing, with more than 90% cases as a foliar application. The number of active ingredients of pesticides was 34 in conventional and 10 in environment-friendly growing on the average per crop. The purpose of pesticide application was as a fungicide in 56% cases and as an insecticide in 43% cases.

Attracting effect of herbal plants for Bemisia tabaci control in a tomato greenhouse (시설토마토에 발생하는 담배가루이 방제를 위한 허브식물의 유인효과)

  • Seo, Mi Hye;Yang, Chang Yeol;Shin, Yong Seub;Yoon, Jung Beom;Choi, Byeong Ryeol;Park, Jung-Joon
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.4
    • /
    • pp.603-610
    • /
    • 2020
  • The problem of increased resistance to pesticides is caused by the management of Bemisia tabaci, which depends almost entirely on pesticides, and to solve this problem, we investigated the host preference of B. tabaci among herbal plants to develop a possible attractant for alternative control methods. Experiments were conducted in greenhouse tomatoes at the National Institute of Horticultural Science and Herbal Science in Wanju-gun. Major herbal plants such as lemon balm, chocolate mint, rose geranium, and apple geranium were installed 50cm from the ground and 30cm from the top of the tomatoes, then the density of B. tabaci was investigated. As a result of examining the density of B. tabaci by the location of the herbal plants, it was found that the lemon balm location showed the highest B. tabaci density while rose geranium and apple geranium were rather avoided. These results are expected to be helpful in the development of alternative B. tabaci control methods using herbal plants including attractants, repellents, and trap plants.

Dissemination of Bacillus Subtilis by using Bee-vectoring Technology in Cherry Tomato Greenhouses (방울토마토 시설재배에서 비벡터링(bee-vectoring) 기술을 이용한 Bacillus Subtilis 포장내 전파)

  • Park, Hong-Hyun;Kim, Jeong Jun;Kim, Kwang-Ho;Lee, Sang-Guei
    • Korean journal of applied entomology
    • /
    • v.52 no.4
    • /
    • pp.357-364
    • /
    • 2013
  • Bee-vectoring is a new crop protection technology used for suppressing insect pests and diseases in crops by disseminating microbial agents into plants during bee pollination activities. In this study, we conducted bee-vectoring trials in cherry tomato greenhouses by using the bumble bee (Bombus terrestris), a microbial agent (Bacillus subtilis) and a new dispenser, and we measured the delivered quantity of microbial agent. Bacterial colony forming units (CFUs) in bees exiting a dispenser ranged from $9.0{\times}10^5$ to $1.9{\times}10^6$ per bee. At greenhouse trials in the National Academy of Agricultural Science (NAAS) trials, 3,300 - 8,500 CFUs per flower were counted and 80 - 100% of the flower samples contained detectable concentrations. There was no significant difference in CFU density between microbial replacement intervals (once a week vs twice a week) in the NAAS trials. In a commercial greenhouse trial, 1,800 - 2,400 CFUs per flower were found, and 83 - 93% of the flower samples contained detectable concentrations. CFUs detected in bee-vectored flowers increased by approximately 75 times before bee-vectoring. The mortality of bumble bees in the NAAS trials was, on average, 22% and little negative effects were observed on the bumble bee colonies. The yield difference for cherry tomatoes in the NAAS trials was not significant between treatments. When we select additional microbial agents that can be disseminated using this technology and create a detailed plan based on insect pests and disease incidence, we can apply this technology in greenhouses for growing tomatoes and strawberries in the near future.

Optical and Physical Properties of Covering Materials for Plastic Greenhouse (플라스틱하우스용 피복재의 광학.물리적 특성)

  • Kwon, Joon Kook;Choi, Young Hah;Park, Dong Kum;Lee, Jae Han;Um, Yeong Cheon;Park, Joong Choon
    • Journal of Bio-Environment Control
    • /
    • v.10 no.3
    • /
    • pp.141-147
    • /
    • 2001
  • To compare to the optical and physical properties of covering materials for plastic greenhouse, EVA(ethylene vinyl acetate, 0.08 mm), polyorefine antifog (0.1 mm), fluoric (0.06 mm), diffused (0.15 mm), polyorefine antidrop (0.15 mm) and PET (polyethylene terephthalate, 0.5 mm) films were used. The small greenhouse (5.4$\times$18.5$\times$2.9 m, W$\times$L$\times$H) investigated during 3 years form 1997 to 1999. After covering materials were used for greenhouse covering during 30 months, UV (300-400 nm) transmittances of diffused film and PET were appeared from 25 to 26%, while those of fluoric film and the other films were 76% and from 63 to 67%. For PAR (photosynthetically active radiation, 400-700 nm), the transmittances of fluoric, antidrop, PET, antifog, EVA, and diffused film were 86.5%, 80.5%, 76.3%, 75.5%, 74.1% and 61.9% respectively. The losses of PAR transmittance of EVA and the antidrop film during period between 7 days and 30 months were higher value 12% and lower value 6% than any other film. Under the canopy of tomato plants, light intensities of the diffused film and the antifog film were 2.5 times and 1.4 times higher than those of PET. Tensile resistances of fluoric film at the break point were the higher than those of antifog film and diffused film. While impact resistance of the antidrop film was the highest value, but the fluoric film was the lowest. Air temperature inside the greenhouse for the day showed to be changed the similar light transmittance of the films. But the increasing order of air temperature for the night was PET, fluoric, antidrop, diffused, antifog and EVA film. Especially, air temperature in the PET was 4$^{\circ}C$ higher than that in the EVA. Solar radiations of the fluoric film, the antidrop film, PET and antifog film in the greenhouse were 32%, 15%, 11% and 4% higher than those of PET. However, those of the diffused film was 7% less than PET.

  • PDF