• Title/Summary/Keyword: Toluene gas

Search Result 315, Processing Time 0.023 seconds

Blood Toluene Concentration of Shoes Factory's Workers Exposed to Toluene (신발제조업 근로자의 톨루엔 노출정도에 따른 혈중 톨루엔 농도분석)

  • 양정선;강성규;정호근
    • YAKHAK HOEJI
    • /
    • v.37 no.5
    • /
    • pp.458-462
    • /
    • 1993
  • Blood toluene concentrations of thirty nine Korean toluene-exposed workers in shoes making factory were checked by headspace-gas chromatographic analysis. Air toluene concentrations in each worker's working region also checked by personal sampler during workshift and analyzed by gas chromatography. The range of blood toluene concentration was 0.15-0.84mg/L. The range of toluene concentration of each worker's working area was 8.46-189.9ppm. The correlation between blood and air concentration of toluene was 0.824.

  • PDF

A Study on Toluene Removal of VOC and Characteristics of Material Using Biofilter (Bio필터를 이용한 VOC 가스 중 Toluene 제거율과 필터특성 연구)

  • 강신묵;하상안
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.2
    • /
    • pp.88-94
    • /
    • 1998
  • This study was investigated the application of biofiltration using cometabolic process to remediate gaseous toluene that are highly recalcitrant to adsorption, absorption and biodegradation. The investigation was conducted using specially built steel columns packed with granular activated carbon for removal of toluene and G.A.C was also coated with Pseudomonas putida microorganisms by addition of KH$_{2}$PO$_{4}$. The biofilter unit was operated in the condition of dry and 27.5% moisture content at gas loading rate of 12.5 l/min. Gaseous toluene taken from tedlar bag was analyzed by the use of G.C. equipped with F.I.D. detector. The removal efficiency of gaseous toluene was 85% at average inlet concentration of 970 ppm during dry operating condition. For gaseous toluene, 91% removal efficient was obtained at the filter material with moisture content and 97% removal efficiency was obtained with Pseudomonas putida microorganisms at gas loading rate of 12.5 l/min.

  • PDF

A Study on Microbial Degradation for Removal of Toluene Vapour by Biofilter (Bio 필터를 이용한 Toluene 제거에서 미생물분해에 관한 연구)

  • 하상안;강신묵
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.1
    • /
    • pp.24-30
    • /
    • 1999
  • A biological filter for treatment of toluene among volatile organic compounds was studied. The investigation was conducted using specially built stainless steel columns packed with granular activated carbon and cold for removal of toluene. The G.A. and mold as filter material was also coated with Pseudomonas putida microorganisms.The biofilter unit was operated in the condition of moisture content vairation at gas loading rate of 12.5 l/min. Gaseous toluene taken from tedlar bag was analyzed by the use of G.C equipped with F.I.d detector. The removal efficiency of gaseous toluene was 95% at average inlet concentration of 950 ppm during bio-degradation operating condition. Effective removal efficiency was obtained with moisture content 27.5% at activated carbon and 32% at mold in this study. The effective operating condition were obtained with pH 6-8, temperature 28-42℃ for microbial degradation at gas loading rate of 12.5 l/min in packed material.

  • PDF

Variations of Equilibrium Adsorption Capacities According to Type and Mixing Fraction of Binary Mixed Gas on Activated Carbon Fixed-bed (활성탄 고정층에서 2성분 혼합가스의 종류와 혼합 분율에 따른 포화 흡착량의 변화)

  • Kim, Hyo-Won;Lee, Song-Woo;Lee, Min-Gyu;Cheon, Jae-Kee
    • Journal of Environmental Science International
    • /
    • v.16 no.10
    • /
    • pp.1197-1202
    • /
    • 2007
  • Adsorption experiments of binary mixed gases composed of acetone/methylethylketone (MEK), MEK/benzene, MEK/toluene, and benzene/toluene were carried out on activated carbon fixed-bed. The variations of equilibrium adsorption capacity according to type and fraction of binary gas were investigated. In case of binary gases composed of acetone/MEK and benzene/toluene, equilibrium adsorption capacities of MEK and toluene were increased according to the increase of fraction of MEK and toluene, but equilibrium adsorption capacities of acetone and benzene were decreased. In case of binary gases composed of MEK/benzene and MEK/toluene, equilibrium adsorption capacities of benzene and toluene were increased according to the increase of fraction of benzene and toluene, but equilibrium adsorption capacities of MEK was decreased.

Degradation of Toluene and Acetic Acid Using Cell-Free Enzyme System from Single Cell-Strain (Single cell-strain부터 유래된 무세포 효소 시스템을 이용한 톨루엔 및 아세트산 분해)

  • Jang, Jae Hyun;Kim, Yeji;Roh, Tae Yong;Park, Joong Kon
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.665-670
    • /
    • 2016
  • This study deals with the possible degradation of toluene and acetic acid when subjected to cell-free enzyme system from the toluene degrading bacteria Pseudomonas putida and acetic acid degrading bacteria Cupriavidus necator. P. putida produces toluene dioxygenase only under the existence of toluene in culture medium and toluene is degraded to cis-toluene dihydrodiol by this enzyme. C. necator produces acetyl coenzyme A synthetase-1 and converts acetic acid to acetyl CoA in order to synthesize ATP to need for growth or PHA which is biodegradable polymer. In case of toluene degradation, the experiment was conducted before and after production of toluene dioxygenase as this enzyme, produced by P. putida, is an inducible enzyme. Toluene was detected using gas chromatography (GC). Similar amount of toluene was found in control group and before production of toluene dioxygenase (experimental group 1). However, reduction in toluene was detected after the production of toluene dioxygenase (experimental group 2). Acetic acid was detected through application of gas chromatography-mass spectrometer (GC-MS). The results showed the acetic acid peak was not detected in the experimental group to apply cell-free enzyme system. These results show that the cell-free enzyme system obtained from P. putida and C. necator retained the ability to degrade toluene and acetic acid. However, P. putida needs to produce the inducible enzyme before preparation of the cell-free enzyme system.

Adsorption Characteristics of Toluene Gas Using Fluorinated Phenol-based Activated Carbons (불소화 처리된 페놀계 활성탄소를 이용한 톨루엔 가스흡착 특성)

  • Kim, Min-Ji;Jung, Min-Jung;Kim, Min Il;Choi, Suk Soon;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.587-592
    • /
    • 2015
  • Activated carbons (ACs) were treated by fluorination to improve the adsorption property of toluene gas among volatile organic compounds (VOCs). The pore characteristics and surface properties of these activated carbons were evaluated by BET and XPS and the adsorption property and removal efficiency of toluene gas was investigated by gas chromatography. The breakthrough time of fluorinated ACs was increased about 27% compared to that of untreated ACs when the toluene gas of 100 ppm was flowed at a flow rate of $300cm^3/min$. Fluorinated AC of 0.1 g adsorbent totally adsorbed toluene gas in 100 ppm to 100 % during the adsorption time in 19 h. These results can be used as a treatment technology or removal of carcinogenic materials such as toluene.

A Study on Pattern Analysis of Odorous Substances with a Single Gas Sensor

  • Kim, Han-Soo;Choi, Il-Hwan;Kim, Sun-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.423-430
    • /
    • 2016
  • This study used a single metal oxide semiconductor (MOS) sensor to classify the major odorous gases hydrogen sulfide ($H_2S$), ammonia ($NH_3$) and toluene ($C_6H_5CH_3$). In order to classify these odorous substances, the voltage on the MOS sensor heater was gradually reduced in 0.5 V steps 5.0 V to examine the changes to the response by the cooling effect on the sensor as the voltage decreased. The hydrogen sulfide gas showed the highest sensitivity compared to odorless air under approximately 2.5 V and the ammonia and toluene gases showed the highest sensitivity under approximately 5.0 V. In other words, the hydrogen sulfide gas reacted better in the low temperature range of the MOS sensor, and the ammonia and toluene gases reacted better in the high-temperature range. In order to analyze the response characteristics of the MOS sensor by temperature in a pattern, a two-dimensional (2D) x-y pattern analysis was introduced to clearly classify the hydrogen sulfide, ammonia, and toluene gases. The hydrogen sulfide gas was identified by a straight line with a slope of 1.73, whereas the ammonia gas had a slope of 0.05 and the toluene gas had a slope of 0.52. Therefore, the 2D x-y pattern analysis is suggested as a new way to classify these odorous substances.

Effects of Operating Parameters on Toluene Removal in Dielectric Barrier Discharge Process (무성방전내에서 톨루엔 제거에 미치는 운전변수의 영향)

  • 정재우;이용환;박경렬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.3
    • /
    • pp.173-182
    • /
    • 2002
  • We investigated the effects of operating variables, such as electrical. reactor and gas parameters on toluene removal and discharge property in the dielectric barrier discharge (DBD) process. The toluene removal was initiated with the energy transfer to the reactor by loading of voltages higher than the discharge onset value. The energy transfer and toluene removal increased with the applied voltage. Higher removal rate was observed with smooth surface electrode despite of lower energy transfer compared with the coarse electrode, because more uniform discharge can be obtained on smooth surface state. The decrease of dielectric material thickness enhanced the removal efficiency by increasing the discharge potential. The toluene removal efficiency decreased with the increase of the inlet concentration. The increase of gas retention time enhanced the removal efficiency by the increase of energy density. The oxygen and humidity contents seem to exert significant influences on the toluene removal by dominating the generation of electrons, ions, and radicals which are key factors in the removal mechanism.

Adsorption Characteristics of VOCs in Activated Carbon Beds (활성탄 흡착탑을 이용한 휘발성 유기화합물의 흡착특성)

  • Noh, Soon-Young;Kim, Ki-Ho;Choi, Jae-Ho;Han, Sam-Duck;Kil, In-Sub;Kim, Duk-Hyun;Rhee, Young-Woo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.4
    • /
    • pp.455-469
    • /
    • 2008
  • VOCs (Volatile organic compounds) are known as one of the harmful chemicals, causing cancer and global warming. Therefore, the proper control, removal, and reduction of the emission of VOCs are important tasks for the environmental protection. Among the method of VOCs removal activated carbon bed is the most efficient and economical method. In this study, the adsorption performance of toluene gas was investigated using various activated carbons. To find out the adsorption efficiency, the H/D (Height/Diameter) of the activated carbon and GHSV (Gas Hourly Space Velocity) of the toluene gas were manipulated with various conditions. The effect of the temperature, humidity and toluene-MEK-IPA mixed gas on adsorption were also investigated. As a result, a high adsorption performance was found when GHSV is lower at room temperature and low humidity. It was also found that the adsorption efficiency of toluene-MEK-IPA mixed gas system was lower than that of toluene gas system.

Micro toluene gas sensor of SWNTs-PtOx system using the vacuum filtering deposition method (진공여과증착법을 이용한 SWNT-PtOx계 마이크로 톨루엔 가스센서)

  • Kim, Il-Jin;Jeon, Young-Zip;Choi, Chang-Kyu;Lee, Young-Uk;Choi, Si-Young;Han, Chang-Soo;Han, Sang-Do
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.179-183
    • /
    • 2009
  • Toluene($C_6H_5CH_3$) gas sensors were fabricated using $PtO_x$ loaded with SWNTs by a new deposition method. The nanoparticle powders of SWNTs-$PtO_x$ composite were deposited on Si wafer substrates by a vacuum filtering deposition method. The fabricated sensors were tested against toluene gas which is a kind of the Volatile Organic Compounds. The composition ratio that exhibited the highest response to toluene gases was SWNTs : $PtO_x\;=\;99:1$ in wt% ratio at operating temperature of about $150^{\circ}C$. The response and recovery times of the sensors were as short as less than 1 min., respectively.