• 제목/요약/키워드: Toluene, Xylene

검색결과 490건 처리시간 0.024초

Microbacterium esteraromaticum CS3-1의 toluene 분해능에 미치는 benzene, ethylbenzene, xylene의 영향

  • 전연신;이은영;조경숙;류희욱
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.179-182
    • /
    • 2000
  • Toluene-degrading bacterium, Microbacterium esteraromaticum CS3-1 was isolated from the biofilter for the removal of BTEX. Microbacterium esteraromaticum CS3-1 was shown to utilize toluene as a primary carbon and energy source. Effect of mixed BTEX gases on toluene degradation rate by M. esteraromaticum CS3-1 was investigated in this study. Toluene degradation rate was 2.26(only toluene), 2.06(toluene+benzene), 2.57(toluene+ethylbenzene), and 4.74(toluene+xylene) mmole $toluene\;{\cdot}\;g-DCW^{-1}\;{\cdot}\;h^{-1}$. Toluene degradation rate was 2.26(only toluene), 1.23(toluene+benzene+ethylbenzene), 1.52 (toluene+ethylbenzene+xylene), and 1.76(toluene+benzene+ethylbenzene+xylene) mmole $toluene\;{\cdot}\;g-DCW^{-1}\;{\cdot}\;h^{-1}$. The presence of BTEX compounds over three mixtures had a negative effect on toluene degradation rate. Toluene degradation rates were enhanced by the presence of ethylbenzene or xylene, whereas the presence of benzene had a negative effect on toluene degradation rate in comparison with toluene degradation rate when only toluene is existent.

  • PDF

토양미생물을 이용한 Benzene, Toluene, Ethylbenzene 그리고 Xylene isomers(BTEX)의 분해시 기질반응 (Substrate Interactions on Biodegradation of Benzene, Toluene, Ethylbenzene and Xylene Isomers(BTEX) by Indigenous Soil Microorganisms)

  • 라현주;장순웅;이시진
    • 대한환경공학회지
    • /
    • 제22권2호
    • /
    • pp.375-383
    • /
    • 2000
  • 유일로 오염된 지역의 토양에서 toluene을 탄소원으로 이용하는 혼합미생물을 분리하여 toluene, benzene, ethylbenzene 및 xylene isomers(BTEX)의 분해특성을 관찰하였다. 단일기질 실험에서는 모든 BTEX의 분해가 이루어졌으며 toluene, benzene, ethylbenzene, p-xylene 순서로 분해되었다. BTEX 혼합기질 분해실험에서는 단일기질일 때보다 분해속도가 상대적으로 느려졌으며, ethylbenzene이 benzene보다 먼저 분해되는 것이 관찰되었다. 이중 혼합물질 반응 실험에서는 방해작용(inhibition), 촉진작용(stimulation), 그리고 비반응(non-interaction)과 같은 다양한 기질반응이 관찰되었으며, ethylbenzene은 benzene, toluene, xylene의 분해에 강한 방해영향을 주었다. Xylene 분해특성에서 m- 및 p-xylene은 혼합미생물에 탄소원으로 이용되었으며 benzene이나 toluene이 동시에 존재할 때는 xylene isomer의 분해가 촉진되었다. 그러나 o-xylene의 분해는 benzene에 의해서만 촉진되었다.

  • PDF

The Effects of Volatile Organic Compounds on Apoptosis of Human Neutrophils and Eosinophils

  • Yang, Eun-Ju;Kim, In-Sik
    • 대한의생명과학회지
    • /
    • 제16권2호
    • /
    • pp.123-126
    • /
    • 2010
  • Volatile organic compounds are commonly off gassed from various building materials and can induce sick building syndrome. Volatile organic compounds such as formaldehyde, xylene and toluene are known as toxic agents in immune cells. Human leukocytes, particularly, neutrophils and eosinophils play important roles in the regulation of immune responses. In this study, we investigated the toxic effects of formaldehyde, ortho-xylene (o-xylene), para-xylene (p-xylene) and toluene on the apoptosis of neutrophils and eosinophils isolated from the blood of healthy donors. Formaldehyde increased the constitutive apoptosis of neutrophils and eosinophils. o-xylene, p-xylene and toluene increased the spontaneous apoptosis of eosinophils, but not that of neutrophils. Formaldehyde increased the protein level of IL-8 in neutrophils and eosinophils, and suppressed the MCP-1 expression in neutrophils. The release of IL-6 from neutrophils was diminished by volatile organic compounds used in this study. In conclusion, formaldehyde, xylene and toluene elevate the apoptosis of neutrophils and eosinophils, and regulate the release of cytokine and chemokine in neutrophils and eosinophils. These results indicate that formaldehyde, xylene and toluene have a cytotoxicity in human neutrophils and eosinophils and may damage the modulation of immune responses.

Cytochrome P-450 의존성 radical 전달에 의한 Benzene, Toluene, Xylene의 대사기전 연구 (A Study on the metabolism mechanism of Benzene, Toluene and Xylene by Cytochrome P-450 dependent radical-mediated)

  • 김기웅;장성근;김양호;문영한
    • Toxicological Research
    • /
    • 제11권2호
    • /
    • pp.205-213
    • /
    • 1995
  • This study was undertaken to investigate the effects of organic solvents on xenobiotic metabollzing enzyme system in vivo by meaas of experimental conditions i.e. (1) single group which was treated by benzene (B), toluene (T) and xylene (X), respectively, (2) combination group which was treated by mixture of benzene+toluene (BT), benzene+xylene (BX), and toluene+xylene (TX), respectively, (3) mixture group which was treated by benzene+ toluene+xylene mixture (M), and to interpreat the interaction between the organic solvents metabolizing enzymes. 1. The contents of cytochrome P-450 in liver microsomes were increased (p < 0.01) in organic solvents treated groups, and the contents of cytochrome P-450 were increased by following order of B < T < M < BT=BX < X < TX. 2. The activity of cytochrome P-450 dependent AHHase was significantly higher in organic solvents treated groups than in control group (p < 0.01), and the activity of AHHase was increased by following order of B < T < BT=BX=TX=xylene < M. 3. The activity of NADPH P-450 reductase was significantly higher in organic solvents treated groups than in control group (p < 0.01), and the order of M < combinated group < X < T

  • PDF

Toluene내성세균 Pseudomonas sp. BCNU 154을 이용한 방향족화합물의 분해 (Biodegradation of Aromatic Hydrocarbons by Toluene-tolerant Pseudomonas sp. BCNU 154)

  • 성은미;정영기;이호원;주우홍
    • 생명과학회지
    • /
    • 제9권6호
    • /
    • pp.715-721
    • /
    • 1999
  • 분리된 toluene내성세균 Pseudomonas sp. BCNU 154을 생물분해반응에 적용하고저 그 가능성을 조사하였다. 방향 족화합물 16개을 대상으로 저화능을 조사한 결과 cumene, cyclohexane, ethylbenzene, p-xylen, m-xylen, toluene 그리고 diphenylether가 공시균쥬에 의해 자화됨이 확인 되었다. Pseudomonas sp. BCNU 154는 toluene, ethylbenzene 그리고 p-xylen 그리고 cumene을 호기적으로 분해하였다. Touene은 12시간후에 완전히 분해되었고, p-xylene과 cumene은 12시간배양시 90% 분해되었으며, ethylbenzene은 12시간 배양시 75%가 분해되었다.

  • PDF

Substrate Utilization Patterns During BTEX Biodegradation by an o-Xylene-Degrading Bacterium Ralstonia sp. PHS1

  • Lee, Sung-Kuk;Lee, Sun-Bok
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권6호
    • /
    • pp.909-915
    • /
    • 2002
  • The biodegradation of BTEX components (benzene, toluene, ethylbenzene, o-xylene, m-xylene, and p-xylene) individually and in mixtures was investigated using the o-xylene-degrading thermo-tolerant bacterium Ralsronia sp. strain PHS1 , which utilizes benzene, toluene, ethylbenzene, or o-xylene as its sole carbon source. The results showed that as a single substrate for growth, benzene was superior to both toluene and ethylbenzene. While growth inhibition was severe at higher o-xylene concentrations, no inhibition was observed (up to 100 mg $l^-1$) with ethylbenzene. In mixtures of BTEX compounds, the PHS1 culture was shown to degrade all six BTEX components and the degradation rates were in the order of benzene, toluene, o-xylene, ethylbenzene, and m- and p-xylene. m-Xylene and p-xylene were found to be co-metabolized by this microorganism in the presence of the growth-supporting BTEX compounds. In binary mixtures containing the growth substrates (benzene, toluene, ethylbenzene. and o-xylene), PHS1 degraded each BTEX compound faster when it was alone than when it was a component of a BTEX mixture, although the degree of inhibition varied according to the substrates in the mixtures. p-Xylene was shown to be the most potent inhibitor of BTEX biodegradation in binary mixtures. On the other hand, the degradation rates of the non-growth substrates (m-xylene and p-xylene) were significantly enhanced by the addition of growth substrates. The substrate utilization patterns between PHS1 and other microorganisms were also examined.

Cometabolism in the Biodegradation of Benzene, Toluene, and ${\rho}-xylene$ Mixture by Isolated Pseudomonas fluorescence BE103

  • Lim, Hye-Kyung;Lee, Jang-Young;Kim, Hak-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • 제4권1호
    • /
    • pp.63-67
    • /
    • 1994
  • A microorganism showing degradative activity towards benzene, toluene and ${\rho}-xylene$ (BTX) was isolated from an activated sewage sludge and was tentatively identified as Pseudomonas fluorescence BE103. This strain was found to utilize benzene and toluene as growth substrates, but to degrade ${\rho}-xylene$ in the obligate presence of a growth substrate. The metabolic product resulted from the cometabolism of ${\rho}-xylene$ was identified as 3, 6-dimethylpyrocatechol by LC/MS analysis, and the metabolic pathway was analyzed to be similar to the tod pathway. From the kinetic studies done regarding BTX biodegradation using Pseudomonas fluorescence BE103, it was revealed that the cometabolism of ${\rho}-xylene$ is significantly affected by the ratio of growth substrate concentration to biomass concentration, and that the cometabolism of ${\rho}-xylene$ initiates only when this ratio was about 0.03.

  • PDF

Cometabolic Removal of Xylene Isomers by Alcaligenes xylosoxidans Y234

  • Yeom, Sung-Ho;Lee, Jung-Heon;Yoo, Young Je
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권3호
    • /
    • pp.222-228
    • /
    • 1998
  • The characteristics of cometabolic removal of xylenes by Alcaligenes xylosoxidans Y234 were investigated. m-Xylene was found to be degraded while ο- and p-xylene were biotransformed into cresols in the presence of benzene or toluene. A lower level of benzene was required than that of toluene to remove the same amount of xylenes, which suggested benzene was a more effective primary substrate than toluene. ο-Xylene was found to be the most toxic to Alcaligenes xylosoxidans Y234 followed by p-xylene and m-xylene. Rates of cell decay during cometabolic removal of ο-, m-, or p-xylene were decreased by up to $76\%$ when benzene-adapted cells were inoculated. Xylenes were removed efficiently using benzene-adapted cells.

  • PDF

미세다공성 세라믹 막에서의 가공응축기구에 의한 휘발성 유기화합물의 분리 (Pore Condensation-Based Separation of VOCs by a Microporous Ceramic Membrane)

  • Cha, Jun-Seok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제12권E호
    • /
    • pp.19-28
    • /
    • 1996
  • A pore concensation-based separation technique was studied experimentally using toluene and xylene in a nitrogen stream. The removal rate of toluene and xylene on a microporous ceramic membrane was enhanced by increasing the partial pressure difference across the membrane, but the selectivity was reduced with increasing flux of nitrogen. This was found both in vacuum and pressure modes of operation. The experimental results from this study suggest that the pores mear the inlet portion of the module were filled with the organic solvent while the pores near the exit section of the module were slightly opened as the solvent concentration was depleted along the module. In the case of xylene, the rate of N$_{2}$ permeation was reduced considerably relative to toluene, resulting in a much higher separation gactor. Condensibility of xylene appeared to be higher than that of toluene, the potential for pore condensation-based separation of xylene was also found to be higher than that for toluene.

  • PDF

Toluene과 iso-Propanol계 및 p-Xylene과 n-Butanol계의 자연발화온도 측정 (Measurement of Autoignition Temperature for Toluene + iso-Propanol (IPA) and p-Xylene+n-Butanol Systems)

  • 윤여송;하동명;유현식;이영순
    • 한국화재소방학회논문지
    • /
    • 제24권2호
    • /
    • pp.172-177
    • /
    • 2010
  • 가연성 혼합물의 최소자연발화온도 거동(MAITB, Minimum Autoignition Temperature Behavior)은 어떤 조성에서 두개의 순수물질 가운데 낮은 물질의 AIT보다 낮은 AIT를 갖는 현상을 말하며, 이는 위험물을 취급하는 공정에서 매우 관심있는 분야이다. 본 연구는 ASTM E659-78(Standard Test Method for Autoignition Temperature of Liquid Chemical)을 이용하여 toluene과 iso-propanol(IPA) 및 p-xylene과 n-butanol혼합물의 최소자연발화온도를 측정하였다. Toluene, IPA, p-xylene 그리고 n-butanol의 자연발화 온도는 각각 $547^{\circ}C,\;463^{\circ}C,\;557^{\circ}C,\;340^{\circ}C$였다. Toluene과 iso-propanol(IPA) 계의 경우는 3 : 7(Toluene :IPA) 비율의 혼합물 일 때는 IPA순수물질($464^{\circ}C$)보다 자연발화온도가 약 $3^{\circ}C$ 낮은 혼합물의 최소자연발화온도거동 MAITB(Minimum Autoignition Temperature Behavior)을 보였다.