• Title/Summary/Keyword: Toluene, Xylene

Search Result 490, Processing Time 0.026 seconds

Microbacterium esteraromaticum CS3-1의 toluene 분해능에 미치는 benzene, ethylbenzene, xylene의 영향

  • Jeon, Yeon-Sin;Lee, Eun-Yeong;Jo, Gyeong-Suk;Ryu, Hui-Uk
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.179-182
    • /
    • 2000
  • Toluene-degrading bacterium, Microbacterium esteraromaticum CS3-1 was isolated from the biofilter for the removal of BTEX. Microbacterium esteraromaticum CS3-1 was shown to utilize toluene as a primary carbon and energy source. Effect of mixed BTEX gases on toluene degradation rate by M. esteraromaticum CS3-1 was investigated in this study. Toluene degradation rate was 2.26(only toluene), 2.06(toluene+benzene), 2.57(toluene+ethylbenzene), and 4.74(toluene+xylene) mmole $toluene\;{\cdot}\;g-DCW^{-1}\;{\cdot}\;h^{-1}$. Toluene degradation rate was 2.26(only toluene), 1.23(toluene+benzene+ethylbenzene), 1.52 (toluene+ethylbenzene+xylene), and 1.76(toluene+benzene+ethylbenzene+xylene) mmole $toluene\;{\cdot}\;g-DCW^{-1}\;{\cdot}\;h^{-1}$. The presence of BTEX compounds over three mixtures had a negative effect on toluene degradation rate. Toluene degradation rates were enhanced by the presence of ethylbenzene or xylene, whereas the presence of benzene had a negative effect on toluene degradation rate in comparison with toluene degradation rate when only toluene is existent.

  • PDF

Substrate Interactions on Biodegradation of Benzene, Toluene, Ethylbenzene and Xylene Isomers(BTEX) by Indigenous Soil Microorganisms (토양미생물을 이용한 Benzene, Toluene, Ethylbenzene 그리고 Xylene isomers(BTEX)의 분해시 기질반응)

  • La, Hyun-Joo;Chang, Soon-Woong;Lee, Si-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.375-383
    • /
    • 2000
  • A mixed culture isolated from petroleum-contaminated soil was enriched on toluene as a sole carbon and energy source, and degradation characteristics of BTEX(Benzene, Toluene, Ethylbenzene, Xylenes) was observed. In the single-substrate experiments, all the BTEX compounds were degraded, and it was degraded as following orders; toluene, benzene, ethylbenzene, and p-xylene. In the degradation experiments of BTEX mixtures, the degradation rate was decreased compared to that in the single substrate experiment and ethylbenzene was degraded faster than benzene. In the experiments of binary-mixtures, various substrate interactions such as inhibition, stimulation, and non-interaction were observed, and ethylbenzene was shown to be most potent inhibitor of BTEX degradation. In the degradation characteristic studies of xylene isomers, m-xylene and p-xylene were degraded as carbon sources, and it was stimulated in the presence of either benzene or toluene. However, degradation of o-xylene was enhanced only in the presence of benzene.

  • PDF

The Effects of Volatile Organic Compounds on Apoptosis of Human Neutrophils and Eosinophils

  • Yang, Eun-Ju;Kim, In-Sik
    • Biomedical Science Letters
    • /
    • v.16 no.2
    • /
    • pp.123-126
    • /
    • 2010
  • Volatile organic compounds are commonly off gassed from various building materials and can induce sick building syndrome. Volatile organic compounds such as formaldehyde, xylene and toluene are known as toxic agents in immune cells. Human leukocytes, particularly, neutrophils and eosinophils play important roles in the regulation of immune responses. In this study, we investigated the toxic effects of formaldehyde, ortho-xylene (o-xylene), para-xylene (p-xylene) and toluene on the apoptosis of neutrophils and eosinophils isolated from the blood of healthy donors. Formaldehyde increased the constitutive apoptosis of neutrophils and eosinophils. o-xylene, p-xylene and toluene increased the spontaneous apoptosis of eosinophils, but not that of neutrophils. Formaldehyde increased the protein level of IL-8 in neutrophils and eosinophils, and suppressed the MCP-1 expression in neutrophils. The release of IL-6 from neutrophils was diminished by volatile organic compounds used in this study. In conclusion, formaldehyde, xylene and toluene elevate the apoptosis of neutrophils and eosinophils, and regulate the release of cytokine and chemokine in neutrophils and eosinophils. These results indicate that formaldehyde, xylene and toluene have a cytotoxicity in human neutrophils and eosinophils and may damage the modulation of immune responses.

A Study on the metabolism mechanism of Benzene, Toluene and Xylene by Cytochrome P-450 dependent radical-mediated (Cytochrome P-450 의존성 radical 전달에 의한 Benzene, Toluene, Xylene의 대사기전 연구)

  • 김기웅;장성근;김양호;문영한
    • Toxicological Research
    • /
    • v.11 no.2
    • /
    • pp.205-213
    • /
    • 1995
  • This study was undertaken to investigate the effects of organic solvents on xenobiotic metabollzing enzyme system in vivo by meaas of experimental conditions i.e. (1) single group which was treated by benzene (B), toluene (T) and xylene (X), respectively, (2) combination group which was treated by mixture of benzene+toluene (BT), benzene+xylene (BX), and toluene+xylene (TX), respectively, (3) mixture group which was treated by benzene+ toluene+xylene mixture (M), and to interpreat the interaction between the organic solvents metabolizing enzymes. 1. The contents of cytochrome P-450 in liver microsomes were increased (p < 0.01) in organic solvents treated groups, and the contents of cytochrome P-450 were increased by following order of B < T < M < BT=BX < X < TX. 2. The activity of cytochrome P-450 dependent AHHase was significantly higher in organic solvents treated groups than in control group (p < 0.01), and the activity of AHHase was increased by following order of B < T < BT=BX=TX=xylene < M. 3. The activity of NADPH P-450 reductase was significantly higher in organic solvents treated groups than in control group (p < 0.01), and the order of M < combinated group < X < T

  • PDF

Biodegradation of Aromatic Hydrocarbons by Toluene-tolerant Pseudomonas sp. BCNU 154 (Toluene내성세균 Pseudomonas sp. BCNU 154을 이용한 방향족화합물의 분해)

  • 성은미;정영기;이호원;주우홍
    • Journal of Life Science
    • /
    • v.9 no.6
    • /
    • pp.715-721
    • /
    • 1999
  • The biodegradative potentialities of a toluene-tolerant Pseudomonas sp. BCNU 154, isolated from waste water, were investigated. Among 16 aromatic substrates tested, cumene, cyclohexane, ethylbenzene, p-xylene, m-xyene, toluene and diphenylether were metabolized. Pseudomonas sp. BCNU 154 degraded aerobically toluene, ethylbenzene, p-xylene and cumene. With toluene competitive degradation occurred after 12 hours, but with p-xylene and cumene, and with ethylbenzene, 90 and 75% degradation occurred after 12 hours of incubation, respectively.

  • PDF

Substrate Utilization Patterns During BTEX Biodegradation by an o-Xylene-Degrading Bacterium Ralstonia sp. PHS1

  • Lee, Sung-Kuk;Lee, Sun-Bok
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.909-915
    • /
    • 2002
  • The biodegradation of BTEX components (benzene, toluene, ethylbenzene, o-xylene, m-xylene, and p-xylene) individually and in mixtures was investigated using the o-xylene-degrading thermo-tolerant bacterium Ralsronia sp. strain PHS1 , which utilizes benzene, toluene, ethylbenzene, or o-xylene as its sole carbon source. The results showed that as a single substrate for growth, benzene was superior to both toluene and ethylbenzene. While growth inhibition was severe at higher o-xylene concentrations, no inhibition was observed (up to 100 mg $l^-1$) with ethylbenzene. In mixtures of BTEX compounds, the PHS1 culture was shown to degrade all six BTEX components and the degradation rates were in the order of benzene, toluene, o-xylene, ethylbenzene, and m- and p-xylene. m-Xylene and p-xylene were found to be co-metabolized by this microorganism in the presence of the growth-supporting BTEX compounds. In binary mixtures containing the growth substrates (benzene, toluene, ethylbenzene. and o-xylene), PHS1 degraded each BTEX compound faster when it was alone than when it was a component of a BTEX mixture, although the degree of inhibition varied according to the substrates in the mixtures. p-Xylene was shown to be the most potent inhibitor of BTEX biodegradation in binary mixtures. On the other hand, the degradation rates of the non-growth substrates (m-xylene and p-xylene) were significantly enhanced by the addition of growth substrates. The substrate utilization patterns between PHS1 and other microorganisms were also examined.

Cometabolism in the Biodegradation of Benzene, Toluene, and ${\rho}-xylene$ Mixture by Isolated Pseudomonas fluorescence BE103

  • Lim, Hye-Kyung;Lee, Jang-Young;Kim, Hak-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.63-67
    • /
    • 1994
  • A microorganism showing degradative activity towards benzene, toluene and ${\rho}-xylene$ (BTX) was isolated from an activated sewage sludge and was tentatively identified as Pseudomonas fluorescence BE103. This strain was found to utilize benzene and toluene as growth substrates, but to degrade ${\rho}-xylene$ in the obligate presence of a growth substrate. The metabolic product resulted from the cometabolism of ${\rho}-xylene$ was identified as 3, 6-dimethylpyrocatechol by LC/MS analysis, and the metabolic pathway was analyzed to be similar to the tod pathway. From the kinetic studies done regarding BTX biodegradation using Pseudomonas fluorescence BE103, it was revealed that the cometabolism of ${\rho}-xylene$ is significantly affected by the ratio of growth substrate concentration to biomass concentration, and that the cometabolism of ${\rho}-xylene$ initiates only when this ratio was about 0.03.

  • PDF

Cometabolic Removal of Xylene Isomers by Alcaligenes xylosoxidans Y234

  • Yeom, Sung-Ho;Lee, Jung-Heon;Yoo, Young Je
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.3
    • /
    • pp.222-228
    • /
    • 1998
  • The characteristics of cometabolic removal of xylenes by Alcaligenes xylosoxidans Y234 were investigated. m-Xylene was found to be degraded while ο- and p-xylene were biotransformed into cresols in the presence of benzene or toluene. A lower level of benzene was required than that of toluene to remove the same amount of xylenes, which suggested benzene was a more effective primary substrate than toluene. ο-Xylene was found to be the most toxic to Alcaligenes xylosoxidans Y234 followed by p-xylene and m-xylene. Rates of cell decay during cometabolic removal of ο-, m-, or p-xylene were decreased by up to $76\%$ when benzene-adapted cells were inoculated. Xylenes were removed efficiently using benzene-adapted cells.

  • PDF

Pore Condensation-Based Separation of VOCs by a Microporous Ceramic Membrane (미세다공성 세라믹 막에서의 가공응축기구에 의한 휘발성 유기화합물의 분리)

  • Cha, Jun-Seok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.E
    • /
    • pp.19-28
    • /
    • 1996
  • A pore concensation-based separation technique was studied experimentally using toluene and xylene in a nitrogen stream. The removal rate of toluene and xylene on a microporous ceramic membrane was enhanced by increasing the partial pressure difference across the membrane, but the selectivity was reduced with increasing flux of nitrogen. This was found both in vacuum and pressure modes of operation. The experimental results from this study suggest that the pores mear the inlet portion of the module were filled with the organic solvent while the pores near the exit section of the module were slightly opened as the solvent concentration was depleted along the module. In the case of xylene, the rate of N$_{2}$ permeation was reduced considerably relative to toluene, resulting in a much higher separation gactor. Condensibility of xylene appeared to be higher than that of toluene, the potential for pore condensation-based separation of xylene was also found to be higher than that for toluene.

  • PDF

Measurement of Autoignition Temperature for Toluene + iso-Propanol (IPA) and p-Xylene+n-Butanol Systems (Toluene과 iso-Propanol계 및 p-Xylene과 n-Butanol계의 자연발화온도 측정)

  • Yoon, Yeo-Song;Ha, Dong-Myeong;Yu, Hyun-Sik;Lee, Yong-Soon
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.172-177
    • /
    • 2010
  • The values of the AIT (autoignition temperature) for fire and explosion protection are normally the lowest reported. The MAITB (Minimum Autoignition Temperature Behavior) of flammable liquid mixture is exhibited when the AITs of mixture is below the AIT of the individual components. The MAITB is an interesting experimental features, which can be significant from the perspective of industrial fire safety. In this study, the AITs of toluene + iso-propanol(IPA) and p-xylene + n-butanol systems were measured using ASTM E659-78 apparatus. The AITs of toluene, iso-propanol (IPA), pxylene and n-butanol which constituted two binary systems were $547^{\circ}C,\;463^{\circ}C,\;557^{\circ}C$ and $340^{\circ}C$ respectively. The toluene + iso-propanol(IPA) system is exhibited MAITB at 0.3 mole fraction of toluene, and its minimum autoignition temperature was $460^{\circ}C$.