• Title/Summary/Keyword: Toll-like receptor 10

Search Result 251, Processing Time 0.033 seconds

In vitro antioxidative and anti-inflammatory effects of the compound K-rich fraction BIOGF1K, prepared from Panax ginseng

  • Hossen, Muhammad Jahangir;Hong, Yong Deog;Baek, Kwang-Soo;Yoo, Sulgi;Hong, Yo Han;Kim, Ji Hye;Lee, Jeong-Oog;Kim, Donghyun;Park, Junseong;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.43-51
    • /
    • 2017
  • Background: BIOGF1K, a compound K-rich fraction prepared from the root of Panax ginseng, is widely used for cosmetic purposes in Korea. We investigated the functional mechanisms of the anti-inflammatory and antioxidative activities of BIOGF1K by discovering target enzymes through various molecular studies. Methods: We explored the inhibitory mechanisms of BIOGF1K using lipopolysaccharide-mediated inflammatory responses, reporter gene assays involving overexpression of toll-like receptor adaptor molecules, and immunoblotting analysis. We used the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay to measure the antioxidative activity. We cotransfected adaptor molecules, including the myeloid differentiation primary response gene 88 (MyD88) and Toll/interleukin-receptor domain containing adaptor molecule-inducing interferon-${\beta}$ (TRIF), to measure the activation of nuclear factor (NF)-${\kappa}B$ and interferon regulatory factor 3 (IRF3). Results: BIOGF1K suppressed lipopolysaccharide-triggered NO release in macrophages as well as DPPH-induced electron-donating activity. It also blocked lipopolysaccharide-induced mRNA levels of interferon-${\beta}$ and inducible nitric oxide synthase. Moreover, BIOGF1K diminished the translocation and activation of IRF3 and NF-${\kappa}B$ (p50 and p65). This extract inhibited the upregulation of NF-${\kappa}B$-linked luciferase activity provoked by phorbal-12-myristate-13 acetate as well as MyD88, TRIF, and inhibitor of ${\kappa}B$ ($I{\kappa}B{\alpha}$) kinase ($IKK{\beta}$), and IRF3-mediated luciferase activity induced by TRIF and TANK-binding kinase 1 (TBK1). Finally, BIOGF1K downregulated the NF-${\kappa}B$ pathway by blocking $IKK{\beta}$ and the IRF3 pathway by inhibiting TBK1, according to reporter gene assays, immunoblotting analysis, and an AKT/$IKK{\beta}$/TBK1 overexpression strategy. Conclusion: Overall, our data suggest that the suppression of $IKK{\beta}$ and TBK1, which mediate transcriptional regulation of NF-${\kappa}B$ and IRF3, respectively, may contribute to the broad-spectrum inhibitory activity of BIOGF1K.

Rifampicin Inhibits the LPS-induced Expression of Toll-like Receptor 2 via the Suppression of NF-${\kappa}B$ DNA-binding Activity in RAW 264.7 Cells

  • Kim, Seong-Keun;Kim, Young-Mi;Yeum, Chung-Eun;Jin, Song-Hyo;Chae, Gue-Tae;Lee, Seong-Beom
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.6
    • /
    • pp.475-482
    • /
    • 2009
  • Rifampicin is a macrocyclic antibiotic which is used extensively for treatment against Mycobacterium tuberculosis and other mycobacterial infections. Recently, a number of studies have focused on the immune-regulatory effects of rifampicin. Therefore, we hypothesized that rifampicin may influence the TLR2 expression in LPS-activated RAW 264.7 cells. In this study, we determined that rifampicin suppresses LPS-induced TLR2 mRNA expression. The down-regulation of TLR2 expression coincided with decreased production of TNF-$\alpha$ Since NF-${\kappa}B$ is a major transcription factor that regulates genes for TLR2 and TNF-$\alpha$, we examined the effect of rifampicin on the LPS-induced NF-${\kappa}B$ activation. Rifampicin inhibited NF-${\kappa}B$ DNA-binding activity in LPS-activated RAW 264.7 cells, while it did not affect IKK$\alpha/\beta$ activity. However, rifampicin slightly inhibited the nuclear translocation of NF-${\kappa}B$ p65. In addition, rifampicin increased physical interaction between pregnane X receptor, a receptor for rifampicin, and NF-${\kappa}B$ p65, suggesting pregnane X receptor interferes with NF-${\kappa}B$ binding to DNA. Taken together, our results demonstrate that rifampicin inhibits LPS-induced TLR2 expression, at least in part, via the suppression of NF-${\kappa}B$ DNA-binding activity in RAW 264.7 cells. Thus, the present results suggest that the rifampicin-mediated inhibition of TLR2 via the suppression of NF-${\kappa}B$ DNA-binding activity may be a novel mechanism of the immune-suppressive effects of rifampicin.

Anti-Inflammatory and Anti-allergic Effects of Gnaphalium affine Extract (떡쑥 추출물의 항염증 및 항알러지 효과)

  • Roh, Kyung-Baeg;Lee, Jung-A;Park, Junho;Jung, Kwangseon;Jung, Eunsun;Park, Deokhoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.2
    • /
    • pp.103-114
    • /
    • 2017
  • Gnaphalium affine D. DON (GA) has been used as a vegetable as well as a folk medicine in East Asia. The antioxidant and anti-complementary activity of GA extract (GAE) has also been reported. However, little is known about its anti-inflammatory and anti-allergic effect and mechanism of action. In this study, we evaluated the inhibitory effects of GAE on the production of inflammatory mediators such as NO, $PGE_2$, TLR4, eotaxin-1 and histamine. Our results suggest that GAE inhibits the production of NO and $PGE_2$ by inhibiting transcriptional activation via the involvement of iNOS and COX-2. The LPS-induced expression of Toll-like receptor 4 (TLR4) was also attenuated. In addition, GAE inhibited A23187-induced histamine release from MC/9 mast cells. It also inhibited the production of eotaxin-1 induced by IL-4. Collectively, these results suggest that GAE may have considerable potential as a cosmetic ingredient with anti-inflammatory and anti-allergic properties.

6-Shogaol, an Active Ingredient of Ginger, Improves Intestinal and Brain Abnormalities in Proteus Mirabilis-Induced Parkinson's Disease Mouse Model

  • Eugene Huh;Jin Gyu Choi;Yujin Choi;In Gyoung Ju;Dongjin Noh;Dong-yun Shin;Dong Hyun Kim;Hi-Joon Park;Myung Sook Oh
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.417-424
    • /
    • 2023
  • Parkinson's disease (PD) which has various pathological mechanisms, recently, it is attracting attention to the mechanism via microbiome-gut-brain axis. 6-Shogaol, a representative compound of ginger, have been known for improving PD phenotypes by reducing neuroinflammatory responses. In the present study, we investigated whether 6-shogaol and ginger attenuate degeneration induced by Proteus mirabilis (P. mirabilis) on the intestine and brain, simultaneously. C57BL/6J mice received P. mirabilis for 5 days. Ginger (300 mg/kg) and 6-shogaol (10 mg/kg) were treated by gavage feeding for 22 days including the period of P. mirabilis treatment. Results showed that 6-shogaol and ginger improved motor dysfunction and dopaminergic neuronal death induced by P. mirabilis treatment. In addition, they suppressed P. mirabilis-induced intestinal barrier disruption, pro-inflammatory signals such as toll-like receptor and TNF-α, and intestinal α-synuclein aggregation. Moreover, ginger and 6-shogaol significantly inhibited neuroinflammation and α-synuclein in the brain. Taken together, 6-shogaol and ginger have the potential to ameliorate PD-like motor behavior and degeneration of dopaminergic neurons induced by P. mirabilis in mice. Here, these findings are meaningful in that they provide the first experimental evidence that 6-shogaol might attenuate PD via regulating gut-brain axis.

TIR-catalyzed Small Molecules: Structure and Function in Plant Immunity (TIR 촉매반응에 의해 생성된 소분자들의 식물면역반응에서의 역할)

  • Seong-Hyeon Bae;Sang-Hyun Park;Ye-Rim Cha;Dawon Jeon;Gah-Hyun Lim
    • Journal of Life Science
    • /
    • v.34 no.9
    • /
    • pp.666-672
    • /
    • 2024
  • Plants recognize pathogens through intracellular receptors that trigger defense signaling. Nucleotide-binding leucine-rich repeat (NLR) proteins within a cell specifically recognize pathogenic molecules (effectors), leading to signal transduction that ultimately triggers the cell death pathway, thereby inducing effector-triggered immunity in plants. NLR proteins are broadly categorized into two types based on their N-terminal domains: coiled-coil domain NLRs (CNLs) and toll/interleukin-1 receptor (TIR) domain NLRs (TNLs) are defined by their unique N-terminal domains. The TIR domain, which is responsible for activates nicotinamide adenine dinucleoside hydrolases (NADases), is crucial for the degradation of the NAD+ cofactor. TNL-dependent immune signaling involves lipase-like proteins known as Enhanced Disease Susceptibility 1 (EDS1) and its partners Phytoalexin Deficient 4 (PAD4) and Senescence-Associated Gene 101 (SAG101). This immune system also requires helper NLR subfamilies, such as activated disease resistance 1 (ADR1) and N requirement gene 1 (NRG1). The catalytic activity of TIR domain proteins generates various small molecules reported to activate plant's immune responses. These small molecules bind to specific sites on EDS1-PAD4 and EDS1-SAG101, inducing structural changes in the EP domain, and subsequently enabling interaction with ADR1 or NRG1. Here, we will discuss the characteristics of these small molecules and describe their relationships with protein complexes based on their structural and biochemical characteristics. We will also discuss how these small molecules can activate immune pathways.

7α-Hydroxycholesterol Elicits TLR6-Mediated Expression of IL-23 in Monocytic Cells

  • Seo, Hyun Chul;Kim, Sun-Mi;Eo, Seong-Kug;Rhim, Byung-Yong;Kim, Koanhoi
    • Biomolecules & Therapeutics
    • /
    • v.23 no.1
    • /
    • pp.84-89
    • /
    • 2015
  • We investigated the question of whether 7-oxygenated cholesterol derivatives could affect inflammatory and/or immune responses in atherosclerosis by examining their effects on expression of IL-23 in monocytic cells. $7{\alpha}$-Hydroxycholesterol ($7{\alpha}OHChol$) induced transcription of the TLR6 gene and elevated the level of cell surface TLR6 protein in THP-1 monocytic cells. Addition of an agonist of TLR6, FSL-1, to TLR6-expressing cells by treatment with $7{\alpha}OHChol$ resulted in enhanced production of IL-23 and transcription of genes encoding the IL-23 subunit ${\alpha}$ (p19) and the IL-12 subunit ${\beta}$ (p40). However, treatment with 7-ketocholesterol (7K) and $7{\beta}$-hydroxycholesterol ($7{\beta}OHChol$) did not affect TLR6 expression, and addition of FSL-1 to cells treated with either 7K or $7{\beta}OHChol$ did not influence transcription of the genes. Pharmacological inhibition of ERK, Akt, or PI3K resulted in attenuated transcription of TLR6 induced by $7{\alpha}OHChol$ as well as secretion of IL-23 enhanced by $7{\alpha}OHChol$ plus FSL-1. Inhibition of p38 MAPK or JNK resulted in attenuated secretion of IL-23. These results indicate that a certain type of 7-oxygenated cholesterol like $7{\alpha}OHChol$ can elicit TLR6-mediated expression of IL-23 by monocytic cells via PI3K/Akt and MAPKs pathways.

Orally administered Lactobacillus casei exhibited several probiotic properties in artificially suckling rabbits

  • Shen, Xue Mei;Cui, Hong Xiao;Xu, Xiu Rong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.8
    • /
    • pp.1352-1359
    • /
    • 2020
  • Objective: Lactobacilli in rabbit intestine is rare and its function in rabbit gut health is not fully understood. The present study aimed to evaluate in vivo the probiotic potential of Lactobacillus casei for suckling rabbits. Methods: Two healthy 5-day-old suckling rabbits with similar weights from each of 12 New Zealand White litters were selected and disturbed to control group and treatment group. All rabbits were artificially fed. The treatment group had been supplemented with live Lactobacillus casei in the milk from the beginning of the trial to 13 days of age. At 15 days of age, healthy paired rabbits were slaughtered to collect intestinal samples. Results: i) Oral administration of Lactobacillus casei significantly increased the proportion of Lactobacilli in the total intestinal bacteria (p<0.01) and obviously reduced that of Escherichia-Shigella (p<0.01); ii) treatment increased the length of vermiform appendix (p<0.05); iii) a higher percentage of degranulated paneth cells was observed in the duodenum and jejunum when rabbits administered with Lactobacillus casei (p<0.01); and iv) the expression of toll-like receptor 9, lysozyme (LYZ), and defensin-7-like (DEFEN) in the duodenum and jejunum was stimulated by supplemented Lactobacillus casei (p<0.05). Conclusion: Orally administered Lactobacillus casei could increase the abundance of intestinal Lactobacilli, decrease the relative abundance of intestinal Escherichia-Shigella, promote the growth of appendix vermiform, stimulate the degranulation of paneth cells and induce the expression of DEFEN and LYS. The results of the present study implied that Lactobacillus casei exhibited probiotic potential for suckling rabbits.

Korean Red Ginseng attenuates ultraviolet-mediated inflammasome activation in keratinocytes

  • Ahn, Huijeong;Han, Byung-Cheol;Hong, Eui-Ju;An, Beum-Soo;Lee, Eunsong;Lee, Seung-Ho;Lee, Geun-Shik
    • Journal of Ginseng Research
    • /
    • v.45 no.3
    • /
    • pp.456-463
    • /
    • 2021
  • Background: Keratinocytes form a physical barrier and act as an innate immune cell in skin. Keratinocytes secrete pro-inflammatory cytokines, such as interleukin (IL)-1β, resulting from inflammasome activation when exposed to ultraviolet (UV) irradiation. Korean Red Ginseng extracts (RGE) have been well-studied as modulators of inflammasome activation in immune cells, such as macrophages. In the study, we elucidated the role of RGE on the UV-mediated inflammasome activation in keratinocytes compared with that in macrophages. Methods: Human skin keratinocyte cells (HaCaT), human epidermal keratinocytes (HEK), human monocyte-like cells (THP-1), and mouse macrophages were treated with RGE or a saponin fraction (SF) or non-saponin fraction (NS) of RGE before and after UV irradiation. The secretion levels of IL-1β, as an indicator of inflammasome activation, were analyzed. Results: The treatment of RGE or SF in macrophages after UV irradiation inhibited IL-1β secretion, but similar treatment in HaCaT cells did not. However, the treatment of RGE or SF in HaCaT cells in the presence of poly I:C, a toll-like receptor (TLR) 3 ligand, before UV exposure elicited the inhibition of the IL-1β secretion. The inhibition was caused by the disruption by RGE or SF of the TLR mediating up-regulation of the pro-IL-1β and NLRP3 genes during the priming step. Conclusion: RGE and its saponins inhibit IL-1β secretion in response to UV exposure in both keratinocytes and macrophages. In particular, RGE treatment interrupted only the priming step in keratinocytes, although it did attenuate both the priming and activation steps in macrophages.

Molecular analysis of chicken interferon-alpha inducible protein 6 gene and transcriptional regulation

  • Jeong-Woong Park;Marc Ndimukaga;Jaerung So;Sujung Kim;Anh Duc Truong;Ha Thi Thanh Tran;Hoang Vu Dang;Ki-Duk Song
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.183-196
    • /
    • 2023
  • Interferon-alpha inducible protein 6 (IFI6) is an interferon-stimulated gene (ISG), belonging to the FAM14 family of proteins and is localized in the mitochondrial membrane, where it plays a role in apoptosis. Transcriptional regulation of this gene is poorly understood in the context of inflammation by intracellular nucleic acid-sensing receptors and pathological conditions caused by viral infection. In this study, chicken IFI6 (chIFI6) was identified and studied for its molecular features and transcriptional regulation in chicken cells and tissues, i.e., lungs, spleens, and tracheas from highly pathogenic avian influenza virus (HPAIV)-infected chickens. The chIFI6-coding sequences contained 1638 nucleotides encoding 107 amino acids in three exons, whereas the duck IFI6-coding sequences contained 495 nucleotides encoding 107 amino acids. IFI6 proteins from chickens, ducks, and quail contain an IF6/IF27-like superfamily domain. Expression of chIFI6 was higher in HPAIV-infected White Leghorn chicken lungs, spleens, and tracheas than in mock-infected controls. TLR3 signals regulate the transcription of chIFI6 in chicken DF-1 cells via the NF-κB and JNK signaling pathways, indicating that multiple signaling pathways differentially contribute to the transcription of chIFI6. Further research is needed to unravel the molecular mechanisms underlying IFI6 transcription, as well as the involvement of chIFI6 in the pathogenesis of HPAIV in chickens.

Dietary glucosinolates inhibit splenic inflammation in high fat/cholesterol diet-fed C57BL/6 mice

  • Gu, HyunJi;Gwon, Min-Hee;Kim, Sang-Min;Yun, Jung-Mi
    • Nutrition Research and Practice
    • /
    • v.15 no.6
    • /
    • pp.798-806
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Obesity is associated with chronic inflammation. The spleen is the largest organ of the lymphatic system and has an important role in immunity. Obesity-induced inflammatory responses are triggered by Toll-like receptor (TLR)-myeloid differentiation primary response 88 (MyD88) pathway signaling. Phenethyl isothiocyanate (PEITC) and 3,3'-diindolylmethane (DIM), major dietary glucosinolates present in cruciferous vegetables, have been reported to produce anti-inflammatory effects on various diseases. However, the effects of PEITC and DIM on the obesity-induced inflammatory response in the spleen are unclear. The purpose of this study was to examine the anti-inflammatory effects of PEITC and DIM on the spleen and their mechanism in high fat/cholesterol diet (HFCD)-fed C57BL/6 mice. MATERIALS/METHODS: We established an animal model of HFCD-induced obesity using C57BL/6 mice. The mice were divided into six groups: normal diet with AIN-93G diet (CON), high fat diet (60% calories from fat) with 1% cholesterol (HFCD), HFCD with PEITC 30 mg/kg/day or 75 mg/kg/day (HFCD+P30, HFCD+P75), and HFCD with DIM 1.5 mg/kg/day or 7.5 mg/kg/day (HFCD+D1.5, HFCD+D7.5). Enzyme-linked immunosorbent assay was used to evaluate pro-inflammatory cytokine secretion. Western blot and quantitative polymerase chain reaction were used to analyze protein and mRNA levels of nuclear factor kappa B (NF-κB) p65, interleukin 6 (IL-6), cyclooxygenase 2 (COX-2), TLR2, TLR4, and MyD88 in spleen tissue. RESULTS: Serum IL-6 levels were significantly higher in the HFCD group than in groups fed a HFCD with PEITC or DIM. Levels of NF-κB p65 protein and TLR2/4, MyD88, NF-κB p65, IL-6, and COX-2 mRNA were significantly higher in the HFCD group than in the CON group and were reduced by the PEITC and DIM supplements. CONCLUSIONS: PEITC- and DIM-supplemented diets improved splenic inflammation by modulating the TLR2/4-MyD88 pathway in HFCD-fed mice. We suggest that dietary glucosinolates may at least partially improve obesity-induced inflammation of the spleen.