• 제목/요약/키워드: Toll signalling

검색결과 4건 처리시간 0.029초

N-terminal GNBP homology domain of Gram-negative binding protein 3 functions as a beta-1,3-glucan binding motif in Tenebrio molitor

  • Lee, Han-Na;Kwon, Hyun-Mi;Park, Ji-Won;Kurokawa, Kenji;Lee, Bok-Luel
    • BMB Reports
    • /
    • 제42권8호
    • /
    • pp.506-510
    • /
    • 2009
  • The Toll signalling pathway in invertebrates is responsible for defense against Gram-positive bacteria and fungi, leading to the expression of antimicrobial peptides via NF-$\kappa$B-like transcription factors. Gram-negative binding protein 3 (GNBP3) detects beta-1,3-glucan, a fungal cell wall component, and activates a three step serine protease cascade for activation of the Toll signalling pathway. Here, we showed that the recombinant N-terminal domain of Tenebrio molitor GNBP3 bound to beta-1,3-glucan, but did not activate down-stream serine protease cascade in vitro. Reversely, the N-terminal domain blocked GNBP3-mediated serine protease cascade activation in vitro and also inhibited beta-1,3-glucan-mediated antimicrobial peptide induction in Tenebrio molitor larvae. These results suggest that the N-terminal GNBP homology domain of GNBP3 functions as a beta-1,3-glucan binding domain and the C-terminal domain of GNBP3 may be required for the recruitment of immediate down-stream serine protease zymogen during Toll signalling pathway activation.

Innate immune response in insects: recognition of bacterial peptidoglycan and amplification of its recognition signal

  • Kim, Chan-Hee;Park, Ji-Won;Ha, Nam-Chul;Kang, Hee-Jung;Lee, Bok-Luel
    • BMB Reports
    • /
    • 제41권2호
    • /
    • pp.93-101
    • /
    • 2008
  • The major cell wall components of bacteria are lipopolysaccharide, peptidoglycan, and teichoic acid. These molecules are known to trigger strong innate immune responses in the host. The molecular mechanisms by which the host recognizes the peptidoglycan of Gram-positive bacteria and amplifies this peptidoglycan recognition signals to mount an immune response remain largely unclear. Recent, elegant genetic and biochemical studies are revealing details of the molecular recognition mechanism and the signalling pathways triggered by bacterial peptidoglycan. Here we review recent progress in elucidating the molecular details of peptidoglycan recognition and its signalling pathways in insects. We also attempt to evaluate the importance of this issue for understanding innate immunity.

TLR10 and Its Unique Anti-Inflammatory Properties and Potential Use as a Target in Therapeutics

  • Faith Fore;Cut Indriputri;Janet Mamutse;Jusak Nugraha
    • IMMUNE NETWORK
    • /
    • 제20권3호
    • /
    • pp.21.1-21.10
    • /
    • 2020
  • TLRs are pattern recognition receptors (PRRs) whose cytoplasmic signalling domain is similar to that of IL-1. The extracellular domain of TLRs serve as the binding site of pathogen associated molecular patterns. TLRs are found on both plasma and endosomal membranes and they mainly exert their function by activating genes which lead to production of inflammatory factors. The latest TLR to be discovered, TLR10 is a unique TLR which exhibit anti-inflammatory properties. TLR10 is found on the plasma membrane with other TLRs namely TLR1, TLR2, TLR4, TLR5 and TLR6. Studies have revealed that TLR10 is found on the same gene cluster with TLR1 and TLR6 and is also a coreceptor of TLR2. Up to date, TLR10 is the only TLR which exhibit anti-inflammatory property. Previously, TLR10 was thought to be an "orphan receptor" but much recent studies have identified ligands for TLR10. Currently there is no review article on TLR10 that has been published. In this narrative review, we are going to give an account of TLR10, its functions mainly as an anti-inflammatory PRR and its possible applications as a target in therapeutics.