• Title/Summary/Keyword: Tolerant

Search Result 2,401, Processing Time 0.028 seconds

A Fault-Tolerant Linear System Solver in a Standard MPI Environment (표준 MPI 환경에서의 무정지형 선형 시스템 해법)

  • Park, Pil-Seong
    • Journal of Internet Computing and Services
    • /
    • v.6 no.6
    • /
    • pp.23-34
    • /
    • 2005
  • In a large scale parallel computation, failures of some nodes or communication links end up with waste of computing resources, Several fault-tolerant MPI libraries have been proposed so far, but the programs written by using such libraries have a portability problem since fault-tolerant features are not supported by the MPI standard yet, In this paper, we propose an application-level fault-tolerant linear system solver that uses the asynchronous iteration algorithm and the standard MPI functions only, which does not have a portability problem and is more efficient by adopting a simplified recovery mechanism.

  • PDF

Direct Duty-ratio Modulated Fault-tolerant Strategy for Matrix Converter-fed Motor Drives

  • Li, Yulong;Choi, Nam-Sup;Han, Byung-Moon;Nho, Eui-Cheol
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.24-32
    • /
    • 2012
  • Direct duty-ratio PWM schemes for continuous fault tolerant operation of matrix converter-fed motor drives are presented. The proposed method features simple modular modulation structure based on per output phase concept, which requires no additional modification on the normal modulation schemes for fault-tolerant applications. Realizations of fault-tolerant strategy applied to different system configurations are also treated to enhance the system flexibility. The proposed method can be effectively applied to treat the motor open phase fault and converter switching device failure. Simulation and experimental results show the feasibility and validation of the proposed strategies.

An overview of decentralized optimal fault-tolerant supervisory control systems

  • Cho, K.H.;Lim, J.T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.358-361
    • /
    • 1996
  • In this paper, we discuss decentralized optimal fault tolerant supervisory control issues on the basis of failure analysis and diagnosis from the angle of discrete event dynamic system. We address the detectability and the observability problems, and develope fault tolerant supervisory control system upon the failure analysis and diagnosis schemes. A complete min-cut is introduced and the procedure for finding the achievable or nonachievable layered optimal legal sublanguages is suggested for a preferential option among the reachable states in the controlled plant. A layered optimal supervisory control framework is proposed upon these. We extend the concept of decentralized supervisory control by considering the problem of combination of decentralized with centralized control in case pure decentralized control happens to be inadequate. We introduce the concept of locally controllable pair and present a hybrid decentralized supervisory control framework. Finally, we propose the analytical framework for a decentralized optimal fault tolerant supervisory control systems.

  • PDF

Robust Fault-Tolerant Control for a Robot System Anticipating Joint Failures in the Presence of Uncertainties (불확실성의 존재에서 관절 고장을 가지는 로봇 시스템에 대한 강인한 내고장 제어)

  • 신진호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.10
    • /
    • pp.755-767
    • /
    • 2003
  • This paper proposes a robust fault-tolerant control framework for robot manipulators to maintain the required performance and achieve task completion in the presence of both partial joint failures and complete joint failures and uncertainties. In the case of a complete joint failure or free-swinging joint failure causing the complete loss of torque on a joint, a fully-actuated robot manipulator can be viewed as an underactuated robot manipulator. To detect and identify a complete actuator failure, an on-line fault detection operation is also presented. The proposed fault-tolerant control system contains a robust adaptive controller overcoming partial joint failures based on robust adaptive control methodology, an on-line fault detector detecting and identifying complete joint failures, and a robust adaptive controller overcoming partial and complete joint failures, and so eventually it can face and overcome joint failures and uncertainties. Numerical simulations are conducted to validate the proposed robust fault-tolerant control scheme.

Routing in UAV based Disruption Tolerant Networks (무인항공기 기반 지연 허용 네트워크에서의 라우팅)

  • Kim, Tea-Ho;Lim, Yu-Jin;Park, Joon-Sang
    • The KIPS Transactions:PartC
    • /
    • v.16C no.4
    • /
    • pp.521-526
    • /
    • 2009
  • Disruption/Delay Tolerant Network(DTN) is a technology for interconnecting partitioned networks. These days, DTN, especially routing in DTN, draws significant attention from the networking community. In this paper, we investigate DTN routing strategies for highly partitioned ad hoc networks where Unmanned Aerial Vehicles (UAVs) perform store-carry-forward functionality for improved network connectivity. Also we investigate UAV trajectory control mechanisms via simulation studies.

Kinematic Analysis of Fault-Tolerant 3 Degree-of-Feedom Spherical Modules (고장에 강인한 구형 3자유도 모듈에 관한 기구학적 해석)

  • 이병주;김희국
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2846-2859
    • /
    • 1994
  • This work deals with kinematic analysis of fault-tolerant 3 degree-of-freedom spherical modules which have force redundancies in its parallel structure. The performance of a redundantly actuated four-legged module with no actuator failure, a single actuator failure, partial and half failure of dual actuator are compared to that of a three-legged module, in terms of maximum force transmission ratio, isotropic characteristics, and fault-tolerant capability. Additionally, a system with an excess number of small floating actuators is considered, and the contribution of these small actuators to the force transmission and fault-tolerant capability is evaluated. This study illustrates that the redundant actuation mode allows significant saving of input actuation effort, and also delivers a fault tolerance.

In vitro Selection of Acifluorfen-tolerant Solanum ptycanthum and Phenotypic Variation in Regenerated Plants

  • Yu, Chang-Yeon;Lim, Jeong-Dae;Kim, Myong-Jo;Kang, Won-Hee;Hyun, Tae-Kyoung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.10 no.4
    • /
    • pp.263-268
    • /
    • 2002
  • Acifluorfen-tolerant callus lines of Solanum ptycanthum were isolated by stepwise selection. Growth of the unselected line was completely inhibited at 0.5 uM. while some selected lines grew at 8 uM acifluorfen. Twenty-two of twenty-five acifluorfen-tolerant callus lines regenerated shoots. Many of the regenerated somaclones were variants, differing in leaf shape, leaf color, number of flower parts, flower color, and fertility. The acifluorfen tolerant S. ptycanthum callus lines differed.

A Study on the robust fault diagnosis and fault tolerant control method for the closed-loop control systems (폐회로 제어시스템의 강인한 고장진단 및 고장허용제어 기법 연구)

  • Lee, Jong-Hyo;Lyou, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.138-145
    • /
    • 2000
  • This paper presents a robust fault diagnosis and fault tolerant control method for the control systems in closed-loop affected by unknown inputs or disturbances. The fault diagnostic scheme is based on the disturbance-decoupled state estimation using a 2-stage state observer for state, actuator bias and sensor bias. The estimated bias show the occurrence time, location and type of the faults directly. The estimated state is used for state feedback to achieve fault tolerant control against the faults. Simulation results show that the method has definite fault tolerant ability against actuator and sensor faults, moreover, the faults can be detected on-line, isolated and estimated simultaneously.

  • PDF

Designing Fault-Tolerant Gaits for Quadruped Robots Using Energy Stability Margins (에너지 안정여유도를 이용한 사족 보행 로봇의 내고장성 걸음새)

  • Yang, Jung-Min
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.7
    • /
    • pp.319-326
    • /
    • 2006
  • This paper proposes a novel fault-tolerant gait for Quadruped robots using energy stability margins. The previously developed fault-tolerant gaits for quadruped robots have a drawback of having marginal stability margin, which may lead to tumbling. In the process of tumbling, the potential energy of the center of gravity goes through a maximum. The larger the difference between the potential energy of the center of gravity of the initial position and that of this maximum, the less the robot tumbles. Hence this difference of potential energy, dubbed as Energy Stability Margin (ESM), can be regarded as the stability margin. In this paper, a novel fault-tolerant gait is presented which gives positive ESM to a quadruped robot suffering from a locked joint failure. Positive ESM is obtained by adjusting foot positions between leg swing sequences. The advantage of the proposed fault-tolerant gait is demonstrated in a case study where a quadruped robot with a failed leg walks on a even slope.

Implementation and Performance Analysis of a Fault-tolerant Mini-MAP System (결함 허용 Mini-MAP 시스템의 구현 및 성능해석)

  • 문홍주;박홍성;권욱현
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.3
    • /
    • pp.1-10
    • /
    • 1995
  • In this paper, a fault-tolerant Mini-MAP system with high reliability is proposed. For fault-tolerance, the LLC sublayer, MAC sublayer, and physical layer of the Mini-MAP system are dualized. The detection of faults, the replacement of the failed network, and the management of the network are three major functions required for the dualization, and they are performed by ESM(Error Supervisory Machine), EMM(Error Management Machine), and NMM(Network Management Machine) of the proposed fault-tolerant Mini-MAP system, respectively. The ring maintenance function of the MAC sublayer is used for the detection of the faults. In the proposed fault-tolerant Mini-MAP system, the data are received from both of the dualized networks and transmitted to the selected one of the two. We analyze the reliability and the MTTF(Mean Time To Failure) of the proposed fault-tolerant Mini-MAP system and show that it has better performance compared to a general Mini-MAP system.

  • PDF