• Title/Summary/Keyword: Tofu Wastewater

Search Result 3, Processing Time 0.02 seconds

Hydrogen gas production by fermentation from various organic wastewater using Clostridium butyricum NCIB 9576 and Rhodopseudomonas sphaeroides E15-1 (각종 유기성 폐수로부터 Clostridium butyricum 및 Rhodopseudomonas sphaeroides에 의한 수소생산)

  • Yoon, Young-Sue;Kim, Hyun-Kyung;Ryu, Hye-Yeon;Lee, In-Gu;Kim, Mi-Sun
    • Journal of Hydrogen and New Energy
    • /
    • v.11 no.1
    • /
    • pp.29-41
    • /
    • 2000
  • Anaerobic fermentation using Clostridium butyricum NCIB 9576, and photo-fermentation using Rhodopseudomonas sphaeroides E15-1 were studied for the production of hydrogen from Makkoli, fruits (orange & apple, watermelon & melon) and Tofu wastewaters. From the Makkoli wastewater, which contained $0.94g/{\ell}$ sugars and $2.74g/{\ell}$ soluble starch, approximately $49mM\;H_2/{\ell}$ wastewater was produced during the initial 18h of the anaerobic fermentation with pH control between 6.5-7.0. Several organic acids such as butyric acid, acetic acid, propionic acid, lactic acid and ethanol were also produced. From Watemlelon and melon wastewater, which contained $43g/{\ell}$ sugars, generated about approximately $71mM\;H_2/{\ell}$ wastewater was produced during the initial 24 h of the anaerobic fermentation. Tofu wastewater, pH 6.5, containing $12.6g/{\ell}$ soluble starch and $0.74g/{\ell}$ sugars, generated about $30mM\;H_2/{\ell}$ wastewater, along with some organic acids, during the initial 24 h of anaerobic fermentation. Makkoli and Tofu wastewaters as substrates for the photo-fermentation by Rhodopseudomonas sphaeroides E15-1 produced approximately 37.9 and $22.2{\mu}M\;H_2/m{\ell}$ wastewaters, respectively for 9 days of incubation under the average of 9,000-10,000 lux illumination at the surface of reactor using tungsten halogen lamps. Orange and apple wastewater, which contained 93.4 g/l, produced approximately $13.1{\mu}M\;H_2/m{\ell}$ wastewater only for 2 days of photo-fermentation and the growth of Rhodopseudomonas sphaeroides E15-1 and hydrogen production were stopped.

  • PDF

Change of Microbial Community and Fermentative Production of Hydrogen from Tofu Wastewater (두부 폐수를 이용한 수소생산 및 미생물의 군집 변화)

  • Jun, Yoon-Sun;Joe, Yoon-A;Lee, Tae-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.139-146
    • /
    • 2009
  • In this study, characteristics of biological hydrogen production and microbial distribution were investigated with the wastewater of Tofu manufacturing process. Comparison of hydrogen production was conducted with acid or base pre-treatment of the wastewater. Maximum hydrogen production was acquired with combination of heat and acid treatment. Hydrogen production ($P_h$) and maximum hydrogen production rate ($R_h$) was calculated 661.01 mL and 12.21 mL/g dry wt biomass/hr from the modified Gompartz equation. Most of microbial community was analyzed as Streptococcus sp. from PCR-DGGE experiment of 16S rDNA. It was concluded that most significant microorganism for hydrogen production was Streptococcus gallolyticus sub sp. in this experiment.

Hydrogen Production from Tofu Manufacturing Wastewater by Heat-treated Anaerobic Microflora from the Concentrated Sewage Sludge (농축 하수오니 유래 열처리 혐기세균 복합체를 이용한 두부제조 폐수로부터 수소 생산)

  • Oh, You-Kwan;Kim, Mi-Sun
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.5
    • /
    • pp.410-416
    • /
    • 2008
  • 합성 및 두부 제조 폐수로부터 혐기 세균 복합체를 이용하여 수소를 생산하였다. 수소생산 혐기 세균 복합체는 하수처리장 농축 소화조에서 발생하는 슬러지를 $90^{\circ}C$에서 20분간 열처리하여 얻었다. 혐기 세균 복합체는 $37^{\circ}C$ 회분식 운전조건에서 1% (w/v) 포도당 함유 PYG (peptone-yeast extract-glucose) 배지로부터 1.15 L-$H_2$/g-균체건조량의 수소를 생산할 수 있었고, 이때 주요 유기산으로 15 mM acetate와 32 mM butyrate가 생성되었다. 같은 발효조건에서 1.4% 전분과 0.07% 환원당을 포함하는 두부 제조 폐수로부터 1.76 L $H_2$/L-두부제조폐수의 수소를 발생하였다. 이와 같은 결과로 부터 포도당과 두부 제조 폐수로부터 혐기세균 복합체에 의한 수소생산 효율은 각각 1.9과 0.9 mol $H_2$/mol 포도당을 나타내었다. 반연속운전(HRT, 12 시간)시 합성폐수를 이용하여 60일 이상 안정적으로 수소를 생산할 수 있었고, 이 때 혐기 세균 복합체는 1.3-2.0 L $H_2$/L-배양액을 발생하였다. PCR-DGGE(polymer chain reaction-denaturing gradient gel electrophoresis) 분석결과, 반응기 내 세균 복합체의 주요 미생물은 Clostridium 종이었다. 본 연구는 적절한 열처리를 통해 혐기 소화조 슬러지로부터 고활성 수소생산 세균 복합체를 얻을 수 있으며, 이들 세균 복합체를 이용하여 합성 및 두부제조 폐수로부터 효율적인 수소생산이 가능하다는 것을 나타내고 있다.