• Title/Summary/Keyword: Tobacco BY-2 Cells

Search Result 129, Processing Time 0.027 seconds

Cloning and Sequence Analysis of Hog Cholera Virus(HCV) E2 Gene (돼지 콜레라 바이러스 E2 유전자의 클로닝 및 염기서열분석)

  • 이영기;강신웅;김선원;박성원;이종철;이청호
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.23 no.2
    • /
    • pp.103-108
    • /
    • 2001
  • Hog cholera virus(HCV) was purified from virus infected Bovine kidney cells. From this virus, total protein was analyzed by SDS-PAGE gel electrophoresis and about 55 kDa band of E2 envelope protein was detected. The viral RNA was purified and E2 cDNA was amplified by RT-PCR. E2 cDNA fragment was cloned to PCRII-TOPO cloning vector and named pE2. The analysis of nucleotide sequence showed that this E2 cDNA fragment inserted into pE2 was 1191 nucleotides long and coded 397 amino acids.

  • PDF

Identification of Nuclear Receptors by RT-PCR in F9 Cells Induced by Ginsenosides

  • Youl-Nam Lee;Shi
    • Journal of Ginseng Research
    • /
    • v.21 no.3
    • /
    • pp.147-152
    • /
    • 1997
  • Ginsenosides $Rh_1$ and $Rh_2$ Induced the differentiation of F9 teratocarcinoma stem cells. These agents are structurally similar to the steroid hormones, therefore, we speculated that the steroid receptor (s) or novel nuclear receptor (s) could be involved in the differentiation process induces by them. Based on this speculation, we tried to alone new nuclear receptors with reverse transcription-polymerase chain reaction (RT-PCR) method by isolating RNA from F9 teratocarcinoma cells induced by ginsenosides. By using RT-PCR with degenerated primers from highly conserved DNA binding domain of nuclear receptors, we identified several nuclear receptors. In northern blot analysis we found that these clones are transcriptionally regulated by ginsenoside Rhl or Rh2 treatment. Further characterizations of these clones are needed to identify the mechanism of gene expression, which has an important role in the differentiation of F9 cells induced by ginsenosides.

  • PDF

Identification of Atherosclerosis Related Gene Expression Profiles by Treatment of Benzo(a)pyrene in Human Umbilical Vein Endothelial Cells

  • Lee, Sun-Hee;Lee, Seung-Eun;Ahn, Hyun-Jong;Park, Cheung-Seog;Cho, Jeong-Je;Park, Yong-Seek
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.2
    • /
    • pp.113-119
    • /
    • 2009
  • Benzo(a)pyrene (BaP) is a persistent environmental contaminant and is present in tobacco smoke. BaP is considered a major contributor of cardiovascular disease. While the activation of endothelial cells by stimuli including tobacco smoke and air pollution contributes importantly to cardiovascular disease, the nature of BaP's mechanism is unclear. In this study, gene expression profiles were investigated in BaPtreated human umbilical vein endothelial cells (HUVECs). Various atherosclerosis related genes could be up- and down-regulated more than 2-fold by BaP, and mRNA levels of atherosclerosis related genes encoding apolipoproteinC III, TLR 2, ICAM 1 and exportin 4 were significantly increased by BaP. Our data suggest that BaP-mediated changes in gene expression contribute to the progression of cardiovascular disease.

Role of S-Adenosylemthionine as an Intermediate in Relation between Polyamine and Ethylene Biosynthesis in Suspension-Cultured Tobacco Cells (담배 현탁배양 세포에 있어 Polyamine 과 Ethylene 생합성시 중간산물로서 S-Adenosylmethionine의 역할)

  • 박기영
    • Journal of Plant Biology
    • /
    • v.33 no.2
    • /
    • pp.87-96
    • /
    • 1990
  • The role of S-adenosylmethionine (SAM) as an intermediate in interrelation between polyamine and ethylene biosynthesis was studied in suspension cultures of Nicotiana tabacum L. Exogenous SAM stimulated the polyamine and ethylene biosynthesis in 4 day-cultured cells, which were in active cell divisions, and 10 day cultured cells, which went on with active cell elongation and senescence. SAM-induced ethylene production was more effective in 10 day-cultured cells than in 4 day-cultured cells, but SAM-induced polyamine biosynthesis was more effective in 4 day-cultured cells than in 10 day-cultured cells. Polyamine contents were increased by the blockage of ethylene biosynthetic pathway in the conversion of SAM to ethylene via 1-aminocyclopropane-1-carboxylinc acid (ACC) with aminooxyacetic acid (AOA). Also, ethylene production was increased by the inhibitors of polyamine biosynthesis such as methylglyoxal bis-(guanylhydrazone) (MGBG), dicyclohexylamine (DCHA), $\alpha$-difluoromethylarginine (DFMA) and $\alpha$-difluoromethylorinithine (DFMO). These results suggest that there may be interrelations between polyamine and ethylene biosynthesis for the competition of SAM and the inherent mechanism of switch on-off in polyamine and ethylene biosynthetic activity with the progress of cell growth and senescence.

  • PDF

Overexpression of human erythropoietin in tobacco does not affect plant fertility or morphology

  • Musa, Tamba A.;Hung, Chiu-Yueh;Darlington, Diane E.;Sane, David C.;Xie, Jiahua
    • Plant Biotechnology Reports
    • /
    • v.3 no.2
    • /
    • pp.157-165
    • /
    • 2009
  • Human erythropoietin (EPO) is a leading product in the biopharmaceutical market, but functional EPO has only been produced in mammalian cells, which limits its application and drives up the production costs. Using plants to produce human proteins may be an alternative way to reduce the cost. However, a recent report demonstrated that overexpression of the human EPO gene (EPO) in tobacco or Arabidopsis rendered males sterile and retarded vegetative growth, which raises concern whether EPO might interfere with hormone levels in transgenic plants. In the present study, we demonstrated that overexpressing EPO with additional 5'-His tag and 3' ER-retention peptides in tobacco did not cause any developmental defect compared to GUS plants. With our method, all 20 transgenic plants grew on selective medium and, further confirmed by PCR, were fertile. Most of them grew similarly compared to GUS plants. Only one transgenic plant (EPO2) was shorter in plant height but had twice the life span compared to other transgenic plants. When 11 randomly selected EPO plants, along with the abnormal plant EPO2, were subjected to RT-PCR analysis, all of them had detectable EPO transcripts. However, their protein levels varied considerably; seven of them had detectable EPO proteins analyzed by western blot. Our results indicate that overexpressing human EPO protein in plants does not have detrimental effects on growth and development. Our transformation systems allow us to further explore the possibility of glycoengineering tobacco plants for producing functional EPO and its derivatives.

EFFECTS OF CARCINOGENICITY AND GROWTH RAGULATORY FACTORS IN HUMAN EPITHELIAL CELLS EXPOSED WITH TOBACCO-SPECIFIC N-NITROSAMINE (흡연특이성 N-Nitrosamine이 인체상피세포의 발암화와 성장조절인자에 미치는 영향)

  • Kim, Seok-Soon;Kim, Chin-Soo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.27 no.2
    • /
    • pp.129-134
    • /
    • 2001
  • Since NNK is one of the most abundant tobacco-specific alkaloids and a strong carcinogenic nitrosamine, it has been used for evaluating a potential of carcinogenicity in the animal models. The present study has attempted to examine the potential of carcinogenicity of NNK in human epithelial cells, from which the cell type the most of cancers including oral cancer and nasal cavity cancer are originated. The cellular model used for the study is a human keratinocyte cell system immortalized by Ad12-SV40 hybrid virus. The cellular system has successfully been used for the carcinogenicity studies because of its limitless life span, epithelial morphology and nontumorigenicity. When cells were treated with a variety of NNK concentrations, levels of saturation density and soft agar colony formation were increased in a dose-dependent fashion. Colonies of large cell aggregates were above 5 at the higher doses. The results indicate that exposure of human cells with NNK induced loss of contact inhibition and increases of anchorage independence and cellular adhesion, which are typical characteristics of the neoplatically transformed cells. When cells were exposed with 100uM NNK for 2hr, mRNA levels of IL-1 and PAI-2 were increased in a dose-dependent manner, but expression of TGF- 1 was not affected. While expression of growth regulatory factors were altered with a short-term exposure, there was no alteration of these factors in the NNK-transformed cells. However, mRNA levels of fibronectin were increased both in the short-term treatment and in the transformation. The results suggest that altered expression of extracellular matrix such as fibronectin following short-term exposure might be fixed in the genome and these altered properties be continuously transfered throughout the cell division. Western blot analysis showed a translocation of PKC- from cytosolic fraction to the particulate fraction, indicating a possible role of NNK in the signal transduction pathway. The present study provided an evidence that NNK in the smoking may be associated with epithelial origin cancer such as oral and nasal cavity cancers. In addition, this study suggested that altered expression of extracellular matrix and PKC may play an important role in the carcinogenic mechanism of NNK.

  • PDF

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone Induces Retinoic Acid Receptor β Hypermethylation through DNA Methyltransferase 1 Accumulation in Esophageal Squamous Epithelial Cells

  • Wang, Jing;Zhao, Shu-Lei;Li, Yan;Meng, Mei;Qin, Cheng-Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2207-2212
    • /
    • 2012
  • Overexpression of DNA methyltransferase 1 (DNMT1) has been detected in many cancers. Tobacco exposure is known to induce genetic and epigenetic changes in the pathogenesis of malignancy. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is an important carcinogen present in tobacco smoke; however the detailed molecular mechanism of how NNK induces esophageal carcinogenesis is still unclear. We found that DNMT1 was overexpressed in ESCC tissues compared with paired non-cancerous tissues, the overexpression being correlated with smoking status and low expression of $RAR{\beta}$. The latter could be upregulated by NNK treatment in Het-1A cells, and the increased DNMT1 expression level reflected promoter hypermethylation and downregulation of retinoic acid receptor ${\beta}$($RAR{\beta}$). RNA interference mediated knockdown of DNMT1 resulted in promoter demethylation and upregulation of $RAR{\beta}$ in KYSE30 and TE-1 cells. 3-(4,5-Dimethyl-thiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometric analysis demonstrated that NNK treatment in Het-1A cells could enhance cell proliferation and inhibit cell apoptosis in a dose-dependent manner. In conclusion, DNMT1 overexpression is correlated with smoking status and low expression of $RAR{\beta}$ in esophageal SCC patients. NNK could induce $RAR{\beta}$ promoter hypermethylation through upregulation of DNMT1 in esophageal squamous epithelial cells, finally leading to enhancement of cell proliferation and inhibition of apoptosis.

Comparison of the Sensitivity of Human Bronchial Epithelial Cells to Cigarette Smoke-induced Inflammatory Responses (인간 유래 폐 세포주별 담배연기 분획의 염증 반응 민감도 비교)

  • Yoo, Ji-Hye;Sohn, Hyung-Ok;Park, Chul-Hoon;Lee, Hyeong-Seok;Jang, Mi;Hyun, Hak-Chul;Shin, Han-Jae
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.32 no.1
    • /
    • pp.19-27
    • /
    • 2010
  • The aim of this study is to compare the sensitivity of both two NCI-H292 and A549 cell types to acute inflammatory responses induced by cigarette smoke. For this, we treated two kinds of smoke fractions derived from 2R4F reference cigarettes: total particulate matter(TPM) collected onto a Cambridge filter pad and gas/vapor phase(GVP) prepared by bubbling through in buffer solution. When we measured cellular cytotoxicity by neutral red uptake assay after treatment for 24 hours, TPM and GVP induced cytotoxic effect in a dose-dependent manner in the range of 10-$100{\mu}g$/mL and 60-$300 {\mu}g$/mL., respectively, in both cell types without any cellular difference. Additionally, when we examined acute inflammatory responses by analyzing cytokines secreted into culture media including tumor necrosis factor-$\alpha$ (TNF-$\alpha$), interleukin-8(IL-8), and transforming growth factor-$\alpha$(TGF-$\alpha$) as well as matrix metalloproteinase-1(MMP-1), the treatment with smoke fractions increased those marker proteins in a dose-dependent manner in NCI-H292. Meanwhile, in A549 cells only MMP-1 was observed to be increased in a dose-dependent fashion. Collectively, our data indicate that NCI-H292 cell type is more sensitive to cigarette smoke-induced inflammatory response than A549 cells. This suggests that NCI-H292 could be useful as an in vitro evaluation tool to assess harmful effects of cigarette smoke.

Biochemical and Histological Charaeteristics of Inferior Red Ginseng (불량홍삼(내백삼)의 생화학적 및 조직학적 특성)

  • Do, Jae-Ho;Kim, Sang-Dal;Seong, Hyeon-Sun
    • Journal of Ginseng Research
    • /
    • v.9 no.2
    • /
    • pp.256-263
    • /
    • 1985
  • In order to investigate the inferior factor of red ginseng quality, the contents of various chemical components, physico-chemical properties and arrangement state of ginseng cells were observed. Contents of total reducing sugar, reducing sugar, crude protein, crude fibre and specific gravity of inside white part of red ginseng were less than those of normal part. But differences in content of crude saponin, HPLC pattern of ginsenosides and reducing ability for DP P H(1,1-dipheny 1-2-picrylhydrazyl) between normal and inside white part of red ginseng were not found. The optical density of 1 water extract of normal part of red ginseng did not differ from that of inside white 1 part of red ginseng, but the visible and UV absorbance of acid hydrolyzate of normal red ginseng showed higher than those of inside white part of red ginseng. The differences in the internal color and tissue of normal and inside white part of red ginseng were easily found with naked eye, and by the microscopic fractography, the orangement state of ginseng cell in the inside white part of red ginseng was less dense than that in normal red ginseng.

  • PDF