• 제목/요약/키워드: Titanium surface

검색결과 1,162건 처리시간 0.027초

PVD처리한 티타늄 합금의 고속충격 거동에 관한 연구 (A Study on the high velocity impact behavior of titanium alloy by PVD method)

  • 손세원;이두성;홍성희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.567-572
    • /
    • 2001
  • In order to investigate the fracture behaviors(penetration modes) and resistance to penetration during ballistic impact of Titanium alloy laminates and nitrified Titanium alloy laminates which were treated by PVD(Physical Vapor Deposition) method, ballistic tests were conducted. Evaporation, sputtering, and ion plating are three kinds of PVD method. In this research, Ion plating was used to achieve higher surface hardness and surface hardness test were conducted using a Micro vicker's hardness tester. Resistance to penetration is determined by the protection ballistic limit($V_{50}$), a statistical velocity with 50% probability for complete penetration. Fracture behaviors and ballistic tolerance, described by penetration modes, are respectfully observed at and above ballistic limit velocities, as a result of $V_{50}$ test and Projectile Through Plates (PTP) test methods. PTP tests were conducted with $0^{\circ}$ obliquity at room temperature using 5.56mm ball projectile. $V_{50}$ test with $0^{\circ}$ obliquity at room temperature were conducted with projectiles that were able to achieve near or complete penetration during PTP tests. Surface hardness, resistance to penetration, and penetration modes of Titanium alloy laminates are compared to those of nitrified Titanium alloy laminates.

  • PDF

수정된 유사체액 내에서 티타늄에 생성된 아파타이트의 고분해능 전자현미경에 의한 분석 (HRTEM Analysis of Apatite Formed on Bioactive Titanium in Modified-SBF)

  • 김현욱;김우정;이갑호;홍순익
    • 한국재료학회지
    • /
    • 제17권8호
    • /
    • pp.408-413
    • /
    • 2007
  • Process of the hydroxyapapite(HA) precipitation on bioactive titanium metal prepared by NaOH in a modified-simulated body fluid(mSBF) was investigated by high resolution transmission electron microscope (HRTEM) attached with energy dispersive X-ray spectrometer(EDX). The amorphous titanate phase on titanium surface is form by NaOH treatment and an amorphous titanate incorporated calcium and phosphate ions in the liquid to form an amorphous calcium phosphate. With increasing of soaking time in the liquid, the HA particles are observed in amorphous calcium phosphate phase with a Ca/P atomic ratio of I.30. The octacalcium phosphate (OCP) structure is not detected in HRTEM image and electron diffraction pattern. After a long soaking time, the HA particles grow as needle-like shape on titanium surface and a large particle-like aggregates of needle-like substance were observed to form on titanium surface within needle-like shape. A long axis of needle parallels to c-direction of the hexagonal HA structure.

졸-겔법에 의한 $TiO_2$ 분체 합성 및 주방용 합성세제의 광분해 효과 (Preparation of $TiO_2$ Powder by Sol-Gel Method and Their Photocatalytic Decomposition Effect of Synthetic Detergents for Kitchen Use)

  • 정용준;류완호;양천희
    • 한국응용과학기술학회지
    • /
    • 제21권2호
    • /
    • pp.140-147
    • /
    • 2004
  • An aqueous solution of a commercial liquid synthetic detergent for kitchen use was photodecomposed in the presence of titanium dioxides powder under an atmosphere of air at room temperature. Titanium dioxides were prepared by sol-gel method from titanium iso-propoxide at different R ratio($H_2O$/titanium iso-propoxide) and calcined at $500^{\circ}C$. All titanium dioxides were characterized by XRD, BET surface area analyzer and UV-VIS spectrometer. The surface area of titanium dioxides prepared at R ratio=6 appeared higher volume about 20% than commercial $TiO_2$ catalysts. XRD patterns of titania particles were observed mixing phase together with rutile and anatase type. Titanium dioxides prepared by sol-gel method show higher activity about 6% than commercial $TiO_2$ catalysts on the photocatalytic degradation of a commercial liquid synthetic detergent for kitchen. The concentration of the detergent decreased to about 90% of its initial value at illumination times of 2 hour. Illumination for 30 minutes decreased the concentration of oxygen to about one-fifth of the initial value.

The Effects of a Er:YAG Laser on Machined, Sand-Blasted and Acid-Etched, and Resorbable Blast Media Titanium Surfaces Using Confocal Microscopy and Scanning Electron Microscopy

  • Park, Jun-Beom;Kim, Do-Young;Ko, Youngkyung
    • Journal of Korean Dental Science
    • /
    • 제9권1호
    • /
    • pp.19-27
    • /
    • 2016
  • Purpose: Laser treatment has become a popular method in implant dentistry, and lasers have been used for the decontamination of implant surfaces when treating peri-implantitis. This study was performed to evaluate the effects of an Erbium-doped:Yttrium-Aluminum-Garnet (Er:YAG) laser with different settings on machined (MA), sand-blasted and acid-etched (SA), and resorbable blast media (RBM) titanium surfaces using scanning electron microscopy and confocal microscopy. Materials and Methods: Four MA, four SA, and four RBM discs were either irradiated at 40 mJ/20 Hz, 90 mJ/20 Hz, or 40 mJ/25 Hz for 2 minutes. The specimens were evaluated with scanning electron microscopy and confocal microscopy. Result: The untreated MA surface demonstrated uniform roughness with circumferential machining marks, and depressions were observed after laser treatment. The untreated SA surface demonstrated a rough surface with sharp spikes and deep pits, and the laser produced noticeable changes on the SA titanium surfaces with melting and fusion. The untreated RBM surface demonstrated a rough surface with irregular indentation, and treatment with the laser produced changes on the RBM titanium surfaces. The Er:YAG laser produced significant changes on the roughness parameters, including arithmetic mean height of the surface (Sa) and maximum height of the surface (Sz), of the MA and SA surfaces. However, the Er:YAG laser did not produce notable changes on the roughness parameters, such as Sa and Sz, of the RBM surfaces. Conclusion: This study evaluated the effects of an Er:YAG laser on MA, SA, and RBM titanium discs using confocal microscopy and scanning electron microscopy. Treatment with the laser produced significant changes in the roughness of MA and SA surfaces, but the roughness parameters of the RBM discs were not significantly changed. Further research is needed to evaluate the efficiency of the Er:YAG laser in removing the contaminants, adhering bacteria, and the effects of treatment on cellular attachment, proliferation, and differentiation.

Evaluation of antibacterial activity and osteoblast-like cell viability of TiN, ZrN and $(Ti_{1-x}Zr_x)N$ coating on titanium

  • Ji, Min-Kyung;Park, Sang-Won;Lee, Kwangmin;Kang, In-Chol;Yun, Kwi-Dug;Kim, Hyun-Seung;Lim, Hyun-Pil
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권2호
    • /
    • pp.166-171
    • /
    • 2015
  • PURPOSE. The aim of this study was to evaluate antibacterial activity and osteoblast-like cell viability according to the ratio of titanium nitride and zirconium nitride coating on commercially pure titanium using an arc ion plating system. MATERIALS AND METHODS. Polished titanium surfaces were used as controls. Surface topography was observed by scanning electron microscopy, and surface roughness was measured using a two-dimensional contact stylus profilometer. Antibacterial activity was evaluated against Streptococcus mutans and Porphyromonas gingivalis with the colony-forming unit assay. Cell compatibility, mRNA expression, and morphology related to human osteoblast-like cells (MG-63) on the coated specimens were determined by the XTT assay and reverse transcriptase-polymerase chain reaction. RESULTS. The number of S. mutans colonies on the TiN, ZrN and $(Ti_{1-x}Zr_x)N$ coated surface decreased significantly compared to those on the non-coated titanium surface (P<0.05). CONCLUSION. The number of P. gingivalis colonies on all surfaces showed no significant differences. TiN, ZrN and $(Ti_{1-x}Zr_x)N$ coated titanium showed antibacterial activity against S. mutans related to initial biofilm formation but not P. gingivalis associated with advanced periimplantitis, and did not influence osteoblast-like cell viability.

티타늄합금의 와이어 방전가공과 후처리 연삭가공 특성 (The Characteristics of Wire Electrical Discharge Machining and Final Surface Grinding for Titanium Alloy)

  • 왕덕현;김원일;김종업
    • 한국공작기계학회논문집
    • /
    • 제11권6호
    • /
    • pp.10-16
    • /
    • 2002
  • Titanium alloys have the characteristics of lightness, high strength and good corrosion resistant and are broadly used in manufacturing parts for military and aerospace industries. These alloys are also recognized for organism materials comparatively and used as fixing ones in human body. Nevertheless titanium alloys have excellent properties, it is difficult to machine by traditional methods because of high hardness and chemically activated property. So higher tool wear is expected when cutting by conventional tools, so it is required nontraditional machining process. Finally, the mechanical characteristics such as surface roughness, shape and hardness on studied for wire electrical discharge machined and pound surfaces of titanium alloys for different heat-tested conditions.

A study on the mechanical properties of TiN/DLC based functionally graded coatings

  • Song, Young-Sik;Kim, J.
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2003년도 추계학술발표회초록집
    • /
    • pp.59-59
    • /
    • 2003
  • In recent, various functional coatings on artificial tooth implants have been conducted to enhance the bonding strength between implants and bones. Despite of these efforts, some previous reports argued that an adhesion strength between titanium implant and the final coatings like hydroxyapatite(HA) is weaker than the strength between coating and bone. In order to increase the adhesion force between the final coating and implant surface, TiN/DLC based functionally graded coating, which has higher mechanical strength than the titanium implant, was applied as a middle layer between titanium implant and final coating. Particularly we finally coated a biocompatible hydroxyapatite film on the DLC layer and examined the mechanical properties. As a result, TiN/DLC based functionally graded coating showed the higher adhesion strength compared with hydroxyapatite single layer coating on the titanium implant.

  • PDF

ATO 처리후, 플라즈마 전해 산화 처리된 Ti-6Al-4V 합금의 표면 형태 (Surface Morphology of PEO-treated Ti-6Al-4V Alloy after Anodic Titanium Oxide Treatment)

  • Kim, Seung-Pyo;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.75-75
    • /
    • 2018
  • Commercially pure titanium (CP-Ti) and Ti-6Al-4V alloys have been widely used in implant materials such as dental and orthopedic implants due to their corrosion resistance, biocompatibility, and good mechanical properties. However, surface modification of titanium and titanium alloys is necessary to improve osseointegration between implant surface and bone. Especially, when titanium oxide nanotubes are formed on the surface of titanium alloy, cell adhesion is greatly improved. In addition, plasma electrolytic oxide (PEO) coatings have a good safety for osseointegration and can easily and quickly form coatings of uniform thickness with various pore sizes. Recently, the effects of bone element such as magnesium, zinc, strontium, silicon, and manganese for bone regeneration are researching in dental implant field. The purpose of this study was researched on the surface morphology of PEO-treated Ti-6Al-4V alloy after anodic titanium oxide treatmentusing various instruments. Ti-6Al-4V ELI disks were used as specimens for nanotube formation and PEO-treatment. The solution for the nanotube formation experiment was 1 M $H_3PO_4$ + 0.8 wt. % NaF electrolyte was used. The applied potential was 30V for 1 hours. The PEO treatment was performed after removing the nanotubes by ultrasonics for 10 minutes. The PEO treatment after removal of the nanotubes was carried out in the $Ca(CH_3)_2{\cdot}H_2O+(CH_3COO)_2Mg{\cdot}4H_2O+Mn(CH_3COO)_2{\cdot}4H_2O+Zn(CH_3CO_2)_2Zn{\cdot}2H_2O+Sr(CH_2COO)_2{\cdot}0.5H_2O+C_3H_7CaO_6P$ and $Na_2SiO_3{\cdot}9H_2O$ electrolytes. And the PEO-treatment time and potential were 3 minutes at 280V. The morphology changes of the coatings on Ti-6Al-4V alloy surface were observed using FE-SEM, EDS, XRD, AFM, and scratch tester. The morphology of PEO-treated surface in 5 ion coating solution after nanotube removal showed formation or nano-sized mesh and micro-sized pores.

  • PDF

Influence of scaling procedures on the integrity of titanium nitride coated CAD/CAM abutments

  • Gehrke, Peter;Spanos, Emmanouil;Fischer, Carsten;Storck, Helmut;Tebbel, Florian;Duddeck, Dirk
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권3호
    • /
    • pp.197-204
    • /
    • 2018
  • PURPOSE. To determine the extent of treatment traces, the roughness depth, and the quantity of titanium nitride (TiN) removed from the surface of CAD/CAM abutments after treatment with various instruments. MATERIALS AND METHODS. Twelve TiN coated CAD/CAM abutments were investigated for an in vitro study. In the test group (9), each abutment surface was subjected twice (150 g vs. 200 g pressure) to standardized treatment in a simulated prophylaxis measure with the following instruments: acrylic scaler, titanium curette, and ultrasonic scaler with steel tip. Three abutments were used as control group. Average surface roughness (Sa) and developed interfacial area ratio (Sdr) of treated and untreated surfaces were measured with a profilometer. The extent of treatment traces were analyzed by scanning electron microscopy. RESULTS. Manipulation with ultrasonic scalers resulted in a significant increase of average surface roughness (Sa, P<.05) and developed interfacial area ratio (Sdr, P<.018). Variable contact pressure did not yield any statistically significant difference on Sa-values for all instruments (P=.8). Ultrasonic treatment resulted in pronounced surface traces and partially detachment of the TiN coating. While titanium curettes caused predominantly moderate treatment traces, no traces or detectable substance removal has been determined after manipulation with acrylic curettes. CONCLUSION. Inappropriate instruments during regular plaque control may have an adverse effect on the integrity of the TiN coating of CAD/CAM abutments. To prevent defects and an increased surface roughness at the transmucosal zone of TiN abutments, only acrylic scaling instruments can be recommended for regular maintenance care.

하이브리드 이산화티탄의 자기조직체 형성공법을 이용하여 제조된 하이브리드 이산화티탄의 자외선차단 상승효과 (Synergy Effect of Sun Protection Factor Using Method of Forming Self-Assembly of Hybrid Titanium Dioxide)

  • 조현대;박수남
    • 한국응용과학기술학회지
    • /
    • 제31권4호
    • /
    • pp.748-758
    • /
    • 2014
  • 화장료의 UV 차단과 은폐효과를 갖는 이산화티탄을 사용하여 자기조직체 형성공법을 적용한 하이브리드 이산화티탄을 제조하고 형태, 성질, 공정의 최적조건과 자외선차단 개선을 확인하였다. 하이브리드 이산화티탄은 마이크로 이산화티탄(250~300nm)의 표면에 나노 이산화티탄(20~30nm)을 자기조직체 형성공법을 이용해 결합시킨, 이산화티탄 대 이산화티탄의 결합체를 말한다. 하이브리드 이산화티탄 제조의 최적조건을 알아내기 위해 (-)을 띄는 마이크로 이산화티탄의 표면에 양이온의 링크로써 $AlCl_3$ 를 농도별로 조정하고, 그에 따른 마이크로와 나노 이산화티탄의 투입비율을 달리하여 각각의 조건에서 만들어진 시료를 광학분석, 입도분석, 전위차분석 등을 이용해 확인하고 최적의 제조 조건을 알 수 있었다. 최적의 제조 조건에서 만들어진 하이브리드 이산화티탄의 자외선차단 상승효과를 확인하기 위하여 하이브리드 이산화티탄이 첨가된 화장료와 사용된 하이브리드 이산화티탄과 같은 비율의 마이크로와 나노 이산화티탄을 첨가한 화장료의 SPF in-vitro 를 측정하였고, 15%내지 30%의 자외선차단 상승 효과를 확인하였다.