• 제목/요약/키워드: Titanium implant

검색결과 575건 처리시간 0.022초

상악 및 하악골에 식립된 치근형 골내매식체와 주위골조직의 반응에 관한 조직학적 비교연구 ('A COMPARATIVE HISTOLOGIC STUDY OF BONE-IMPLANT INTERFACE TO THE TITANTIUM ROOT FORMED IMPLANTS IN THE Mx, Mn')

  • 이재황;허성주;조인호
    • 대한치과보철학회지
    • /
    • 제29권2호
    • /
    • pp.35-48
    • /
    • 1991
  • Installation periods of implants in Mx. and Mn., is related to pattern of bone formation. The purpose of this study was to observe histologic response in osseointegration at root formed implant-tissue interface at Mx. and Mn., the other is comparison of osseointegration level between Mx. and Mn. at 8 weeks. In this study, unilateral upper & lower molars were extracted in dog. After allowing to heal for 4 months, two kinds of osseointegrated implants Swedevents, Corevents-were inserted in dog. The specimens were treated by conventional method. The interface zones between bone and implant were investiigated using X-rays, light microscope. The following results were obtained from this study. 1. Around titanium implants that were installed in Ma and Mn., Radio lucencies don't exist 2. There are not inflammation and mobility of titanium implants that were installed in Mx. and Mn. Most of implant surface are covered by bony tissued partly by bone-marrow tissues. 3. Titanium implants installed in Mx, in contrast to same implants in Mn., shows more coverage by bone marrow tissue and lack of apposition lamellar bone, which lead to the assumption that bone formation in Mn. is faster than in Mx.

  • PDF

티타늄 표면조도가 조골세포의 부착 및 분화에 미치는 영향 (Effect of titanium surface roughness on adhesion and differentiation of osteoblasts)

  • 김정식;이재관;고성희;엄흥식;장범석
    • Journal of Periodontal and Implant Science
    • /
    • 제35권4호
    • /
    • pp.839-850
    • /
    • 2005
  • The success of an implant is determined by its integration into the tissue surrounding the biomaterial. Surface roughness is considered to influence the behavior of adherent cells. The aim of this in vitro study was to determine the effect of surface roughness on Saos-2 osteoblast-like cells. Titanium disks blasted with 75 ${/mu}m$ aluminum oxide particles and machined titanium disks were prepared. Saos-2 were plated on the disks at a density of 50,000 cells per well in 48-well dishes. After 1 hour, 1 day, 6 days cell numbers were counted. One day, 6 days after plating, alkaline phosphatase(ALPase) activity was determined. Compared to experimental group, the number of cells was significantly higher on control group. The stimulatory effect of surface roughness on ALPase was more pronounced on the experimental group than on control group. These results demonstrate that surface roughness alters proliferation and differentiation of osteoblasts. The results also suggest that implant surface roughness may play a role in determining phenotypic expression of cells.

MoS2 코팅된 치과용 임플란트의 표면특성과 생체적합성 (Surface Characteristics and Biocompatibility of MoS2-coated Dental Implant)

  • 권민기;이준식;김미은;최한철
    • Corrosion Science and Technology
    • /
    • 제23권1호
    • /
    • pp.72-81
    • /
    • 2024
  • The Ti-6Al-4V alloy is widely used as an implant material due to its higher fatigue strength and strengthto-weight ratio compared to pure titanium, excellent corrosion resistance, and bone-like properties that promote osseointegration. For rapid osseointegration, the adhesion between the titanium surface and cellular biomolecules is crucial because adhesion, morphology, function, and proliferation are influenced by surface characteristics. Polymeric peptides and similar coating technologies have limited effectiveness, prompting a demand for alternative materials. There is growing interest in 2D nanomaterials, such as MoS2, for good corrosion resistance and antibacterial, and bioactive properties. However, to coat MoS2 thin films onto titanium, typically a low-temperature hydrothermal synthesis method is required, resulting in the synthesis of films with a toxic 1T@2H crystalline structure. In this study, through high-temperature annealing, we transformed them into a non-toxic 2H structure. The implant coating technique proposed in this study has good corrosion resistance and biocompatibility, and antibacterial properties.

Tissue integration of zirconia and titanium implants with and without buccal dehiscence defects

  • Lim, Hyun-Chang;Jung, Ronald Ernst;Hammerle, Christoph Hans Franz;Kim, Myong Ji;Paeng, Kyeong-Won;Jung, Ui-Won;Thoma, Daniel Stefan
    • Journal of Periodontal and Implant Science
    • /
    • 제48권3호
    • /
    • pp.182-192
    • /
    • 2018
  • Purpose: The purpose of the present study was to validate an experimental model for assessing tissue integration of titanium and zirconia implants with and without buccal dehiscence defects. Methods: In 3 dogs, 5 implants were randomly placed on both sides of the mandibles: 1) Z1: a zirconia implant (modified surface) within the bony housing, 2) Z2: a zirconia implant (standard surface) within the bony housing, 3) T: a titanium implant within the bony housing, 4) Z1_D: a Z1 implant placed with a buccal bone dehiscence defect (3 mm), and 5) T_D: a titanium implant placed with a buccal bone dehiscence defect (3 mm). The healing times were 2 weeks (one side of the mandible) and 6 weeks (the opposite side). Results: The dimensions of the peri-implant soft tissue varied depending on the implant and the healing time. The level of the mucosal margin was located more apically at 6 weeks than at 2 weeks in all groups, except group T. The presence of a buccal dehiscence defect did not result in a decrease in the overall soft tissue dimensions between 2 and 6 weeks ($4.80{\pm}1.31$ and 4.3 mm in group Z1_D, and $4.47{\pm}1.06$ and $4.5{\pm}1.37mm$ in group T_D, respectively). The bone-to-implant contact (BIC) values were highest in group Z1 at both time points ($34.15%{\pm}21.23%$ at 2 weeks, $84.08%{\pm}1.33%$ at 6 weeks). The buccal dehiscence defects in groups Z1_D and T_D showed no further bone loss at 6 weeks compared to 2 weeks. Conclusions: The modified surface of Z1 demonstrated higher BIC values than the surface of Z2. There were minimal differences in the mucosal margin between 2 and 6 weeks in the presence of a dehiscence defect. The present model can serve as a useful tool for studying peri-implant dehiscence defects at the hard and soft tissue levels.

호환 가능한 수종의 치과용 임플란트 나사의 풀림토크값에 대한 연구 (Detorque Values of Various Compatible Dental Implant Screws)

  • 이주리;이동환;황재웅;최정한
    • 구강회복응용과학지
    • /
    • 제26권3호
    • /
    • pp.273-283
    • /
    • 2010
  • 이 연구는 다수의 임플란트에 의해 지지되는 보철물과 단일 임플란트 보철물에서 호환 가능한 세 가지 종류의 나사의 풀림토크값을 측정하여 나사 결합부 안정성에 차이가 있는지를 알아보고자 하였다. 이를 위해, 네 개의 외부 육각 임플란트에 직접 연결되는 임플란트 상부구조물을, 아크릴릭 레진을 이용한 연결인상법으로 얻은 총 6개의 실험모형에 20 Ncm의 힘으로 조인 후, 각 나사의 풀림토크값을 총 2회 측정하였다. 사용한 지대주 나사는 토크타이트(TorqTite), 골드타이트(Gold-Tite), 그리고, 티타늄(Titanium) 나사였다. 또한, 단일 임플란트 수복의 경우 를 가정하여 총 5개의 실험모형 상의 2개의 임플란트에, 한 개의 지대주(GoldAdapt Engaging)를 다시 세 종류의 나사로 연결한 후, 각 나사의 풀림토크값을 총 2회 측정하였다. 나사의 풀림토크값의 비교를 위한 통계적 분석을 혼합모형(mixed model)을 이용하여 유의수준 .05에서 실시한 결과, 다수 임플란트 지지 상부구조물의 경우, 나사의 종류에 따른 풀림토크값은 통계적으로 유의성 있는 차이를 보이지 않았다(p>0.05). 그러나 단일 임플란트 지대주의 경우에는 통계적으로 유의성 있는 차이를 보였으며(p=0.0175), 토크타이트 나사(p=0.0462)와 티타늄 나사(p=0.0348)는 각각, 골드타이트 나사보다 유의성 있게 큰 풀림토크값을 보였으나, 두 나사 간에는 유의성 있는 차이가 없었다(p>0.05). 이상의 연구 결과로 보아, 서로 다른 종류의 나사가 나사 결합부의 초기 안정성에 미치는 영향은, 단일 임플란트 보철물의 경우에서와는 달리, 다수의 임플란트에 의해 지지되는 보철물의 경우에는 미미하다고 할 수 있다.

Techniques for dental implant nanosurface modifications

  • Pachauri, Preeti;Bathala, Lakshmana Rao;Sangur, Rajashekar
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권6호
    • /
    • pp.498-504
    • /
    • 2014
  • PURPOSE. Dental implant has gained clinical success over last decade with the major drawback related to osseointegration as properties of metal (Titanium) are different from human bone. Currently implant procedures include endosseous type of dental implants with nanoscale surface characteristics. The objective of this review article is to summarize the role of nanotopography on titanium dental implant surfaces in order to improve osseointegration and various techniques that can generate nanoscale topographic features to titanium implants. MATERIALS AND METHODS. A systematic electronic search of English language peer reviewed dental literature was performed for articles published between December 1987 to January 2012. Search was conducted in Medline, PubMed and Google scholar supplemented by hand searching of selected journals. 101 articles were assigned to full text analysis. Articles were selected according to inclusion and exclusion criterion. All articles were screened according to inclusion standard. 39 articles were included in the analysis. RESULTS. Out of 39 studies, seven studies demonstrated that bone implant contact increases with increase in surface roughness. Five studies showed comparative evaluation of techniques producing microtopography and nanotopography. Eight studies concluded that osteoblasts preferably adhere to nano structure as compared to smooth surface. Six studies illustrated that nanotopography modify implant surface and their properties. Thirteen studies described techniques to produce nano roughness. CONCLUSION. Modification of dental osseous implants at nanoscale level produced by various techniques can alter biological responses that may improve osseointegration and dental implant procedures.

양극산화 표면처리한 티타늄 임플랜트를 난소절제한 백서 경골에 매식 후 주위 골형성에 관한 연구 (THE BONE FORMATION AROUND ANODIC OXIDIZED TITANIUM IMPLANTS IN THE TINBIAE OF OVARECTOMIZED RATS)

  • 박성환;정석영;이재열;김규천;신상훈
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제34권3호
    • /
    • pp.306-318
    • /
    • 2008
  • Anodic spark deposition method(ASD) surface treated titanium implant possesses a considerable osteoconductive potential that promoting a high level of implant osseointegration in normal bone. The purpose of this study was to observe the ASD implant's osseointegration in the osteoporosis-induced animal model. Twenty four rats, 10 weeks of age, were ovarectomized and 5 weeks later divided into two groups : ASD implant group and control implant group. Titanium screw implants (diameter; 2.0 mm, length, 3.5 mm; pitch-height, 0.4 mm) were designed for this study. Experimental implants were ASD treated and no treatment on control implants. ASD implants and control implants were placed in to left tibiae of rats. The rats were sacrificed at different time interval(1, 2, 4 and 8 weeks after implantation) for histopathologic observation and immunohisto-chemistrical observation, with collagen type Ⅰ, fibronectin, integrin ${\alpha}_2{\beta}_1$ and integrin ${\alpha}_5{\beta}_1$ antibodies. The results obtained from this study were as follow: 1. Histopathologic findings, overall tissue response and the pattern of bone formation in both groups were similar. In ASD group, more newly formed bone was seen at 1 week and 2weeks than control group. 2. The levels of type Ⅰ collagen and fibronectin expression were the most abundant at 2weeks and decreased gradually in both groups. Fibronectin and type Ⅰ collagen expression in ASD group were stronger than control group but no significance. 3. The levels of integrin ${\alpha}_2{\beta}_1$ and Integrin ${\alpha}_5{\beta}_1$ expression were most abundant at 2 weeks and decreased gradually in both groups. No significant difference was observed in both groups. From this results, anodic oxidized titanium implants were more advantages in early stage of bone formation than control group, but have no significance in tissue responses and late bone formations. It could be stated that although anodic oxidized titanium implant possesses considerable osteoconductive potential but in osteoporotic bone condition dental implant procedure should performed after improving or treating the osteoporotic bone condition.

Characterization of Titanium Implant Anodized in Various Electrolytes

  • Kim, Hyung-Sun;Cho, Won-Il;Cho, Byung-Won;Park, Joon-Bong;Hur, Yin-Sik
    • 전기화학회지
    • /
    • 제5권2호
    • /
    • pp.43-46
    • /
    • 2002
  • Commercial titanium rod was anodized in three types of electrolytes such as 0.06 mol/L $\beta-glycerophosphate+0.3mol/L$ calcium acetate, 0.06mol/L $\beta-glycerophosphate+0.3mol/L$ sodium acetate and 0.06 mol/L $\beta-glycerophosphate+5mol/L$ calcium phosphate. The titanium oxide layer $(TiO_2)$ was characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and electron spectroscopy chemical analysis (ESCA). Numerous micropores were observed on the titanium oxide layer by SEM. The diameter of micropores increased with the increase of electrolytic voltage. The titanium oxide layer was composed of anatase structure. The phosphorous element was detected at 130 eV binding energy, but calcium was not found in the oxide layer because of lower contents. After anodizing the oxide layer was etched in the 30g/L NaOH solution at $80^{\circ}C$ for 1hr. The surroundings of micropores were much more smoothed and rounded than before alkaline etching.

질소이온 주입이 생체적합성 티타늄 임플란트의 마모특성에 미치는 영향 (Effect of Nitrogen Ion Implantation on Wear Behavior of Biocompatible Ti Implant)

  • 변응선;김동수;이구현;정용수
    • 연구논문집
    • /
    • 통권30호
    • /
    • pp.137-145
    • /
    • 2000
  • Since the concept of osseointegration was introduced, titanium and titanium-based alloy materials have been increasingly used for bone-anchored metal in oralmaxillofacial and orthopedic reconstruction. Successful osseointegration has been attributed to biocompatibility and surface condition of metal implant among other factors. Although titanium and titanium alloys have an excellent over the metal ion release and biocompatibility, considerable controversy has developed over the metal ion and wear debris in vivo and vitro. In this study, nitrogen ion implantation technique was used to improve the corrosion resistance and wear property of titanium materials, ultimately to enhance the tissue reaction to titanium implants As ion implantation energy was increased, projected range of nitrogen ion the Ti substrate was gradually increased. Under condition of constant ion energy. atomic concentration of nitrogen was also increased with ion doses. The friction in Hank's solution was increased with ion doses. The friction coefficient of ion implanted specimens in HanK's solution was increased from 0.39, 0.47 to 0.52, 0.65 respectively under high energy and ion dose conditions. As increasing ion energies and ion dose, amount of wear was reduced.

  • PDF