• Title/Summary/Keyword: Titanium complexes

Search Result 26, Processing Time 0.018 seconds

Theoretical Insights into Oxygen Vacancies in Reduced Bulk TiO2: A Mini Review (벌크 TiO2 산소 공공 결함에 대한 이론적 이해)

  • Jaehyuk Choi;Junho Lee;Taehun Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.231-240
    • /
    • 2024
  • Titanium dioxide (TiO2) holds significant scientific and technological relevance as a key photocatalyst and resistive random-access memory, demonstrating unique physicochemical properties and serving as an n-type semiconductor. Understanding the density and arrangement of oxygen vacancies (VOs) is crucial for tailoring TiO2's properties to diverse technological needs, driving increased interest in exploring oxygen vacancy complexes and superstructures. In this mini review, we summarize the recent understandings of the fundamental properties of oxygen vacancies in bulk rutile (R-TiO2) and anatase (A-TiO2) based on DFT and beyond method. We specifically focus on the excess electrons and their spatial arrangement of disordered single VO in bulk R and A-TiO2, aligned with the experimental findings. We also highlight the theoretical works on investigating the geometries and stabilities of ordered VOs complexes in bulk TiO2. This comprehensive review provides insights into the fundamental properties of excess electrons in reduced TiO2, offering valuable perspectives for future research and technological advancements in TiO2-based devices.

The analysis for the HCl modification effect and formation of TiO2 on activated carbon fiber surface (활성탄소섬유 표면의 염산처리효과와 TiO2 형성에 관한 분석)

  • Oh, Won-Chun;Han, Sang-Bum;Bae, Jang-Soon
    • Analytical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.279-288
    • /
    • 2007
  • We have studied a method for the preparation of $ACF/TiO_2$ composites involving the penetrationof titanium n-butoxide (TNB) solution into activated carbon fiber. It was focused on the characterization of $TiO_2$ formed in prorous carbon was which increased with surface functional groups by hydrochloric acid treatment. The conversion of TNB to $TiO_2$ for the acid treatment effect must be important for the preparationof $ACF/TiO_2$ composites. From the characterization of surface properties, both the BET surface area and the total pore volume decreased as the distribution of $TiO_2$ on the activated carbon fiber surfaces after acid treatments.The changes in XRD pattern showed the typical anatase type on $ACF/TiO_2$ composite for the sample named FT, FT1 and FT2 treated with 0.05, 0.1 and 0.5 M, respectively. However, XRD patern of FT3 treated with 0.5M showed mixed amatase-rutile structure. According to the results of SEM micrographs, the titanium complexe particles were irregularly distributed around carbon. And some large clusters were found when an amount of acid treatment increased. The EDX results of $ACF/TiO_2$ composites showed the presence of C, O and P with strong Ti peaks. Finally, the excellent photocatalytic activity of the $ACF/TiO_2$ composites between relative concentration($c/c_o$) of MB (methylene blue) and UV irradiation time could be attributed to the both effects between photocatalysis of the formation of titania complexes and adsorptivity of the activated carbon fiber.

Organotitanium Chemistry (IV). The Molecular and Electronic Structure of $TiCl(OC_6H_5)_3{\cdot}C_6H_5OH\;and\;Ti(OC_6H_5)_4{\cdot}C_6H_5OH$ (유기티탄 화학 (제4보). $TiCl(OC_6H_5)_3{\cdot}C_6H_5OH\;및\;Ti(OC_6H_5)_4{\cdot}C_6H_5OH$의 분자 및 전자구조)

  • Lee Hoosung;Uh Young Sun;Sohn Youn Soo
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.2
    • /
    • pp.92-97
    • /
    • 1975
  • The molecular and electronic structures of $TiCl(OC_6H_5)_3{\cdot}C_6H_5OH\;and\;Ti(OC_6H_5)_4{\cdot}C_6H_5OH$ have been studied by employing cryoscopic and electronic spectroscopic methods. The cryoscopic data have shown that the dimeric tetraphenoxytitanium(Ⅳ) phenolate in solid undergoes complete dissociation into monomer in solution and also the chlorocomplex starts dissociation around the concentration of 8 m mole/l. Therefore, these two Ti-complexes are pentacoordinated in dilute solution and the local symmetry of the titanium ion in these complexes seems to be trigonalbipyramid. The electronic spectra of $TiCl(OC_6H_5)_3{\cdot}C_6H_5OH$ and $Ti(OC_6H_5)_4{\cdot}C_6H_5OH$ each show two band, systems, one vibration-structural band characteristic of the aromatic ring in the near UV and another visible band at 26.8 kK, 29.6 kK, respectively, which are assigned as a ligand to metal charge transfer band corresponding to $^1A_1''{\to}^1E'\;or\;^1E''$ transition.

  • PDF

Chemical Reactivity of Ti+ within Water, Dimethyl Ether, and Methanol Clusters

  • Koo, Young-Mi;An, Hyung-Joon;Yoo, Seoung-Kyo;Jung, Kwang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.2
    • /
    • pp.197-204
    • /
    • 2003
  • The intracluster ion-molecule reactions of $Ti^+(H_2O)_n,\;Ti^+(CH_3OCH_3)_n,\;and\;Ti^+(CH_3OD)_n$ complexes produced by the mixing of the laser-vaporized plasma and the pulsed supersonic beam were studied using a reflectron time-of-flight mass spectrometer. The reactions of $Ti^+$ with water clusters were dominated by the dehydrogenation reaction, which produces $TiO^+(H_2O)_n$ clusters. The mass spectra resulting from the reactions of $Ti^+\;with\;CH_3OCH_3$ clusters exhibit a major sequence of $Ti^+(OCH_3)_m(CH_3OCH_3)_n$ cluster ions, which is attributed to the insertion of $Ti^+$ ion into C-O bond of $CH_3OCH_3$ followed by $CH_3$ elimination. The prevalence of $Ti^+(OCH_3)_m(CH_3OD)_n$ ions in the reaction of $Ti^+\;with\;CH_3OD$ clusters suggests that D elimination via O-D bond insertion is the preferred decomposition pathway. In addition, the results indicate that consecutive insertion reactions by the $Ti^+$ ion occur for up to three precursor molecules. Thus, examination of $Ti^+$ insertion into three different molecules establishes the reactivity order: O-H > C-O > C-H. The experiments additionally show that the chemical reactivity of heterocluster ions is greatly influenced by cluster size and argon stagnation pressure. The reaction energetics and formation mechanisms of the observed heterocluster ions are also discussed.

Preparation of AC/TiO2 Composites from Activated Carbon Modified by HNO3 and Their Photocatalytic Activity

  • Chen, Ming-Liang;Oh, Won-Chun
    • Carbon letters
    • /
    • v.8 no.2
    • /
    • pp.108-114
    • /
    • 2007
  • In this work, activated carbon (AC) after $HNO_3$ modification was used as the support during the production of supported $TiO_2$ to increase the high deposition efficiency and the photocatalytic activity. The results of $N_2$ adsorption showed that the BET surface area of samples decreased with an increasing of the concentration of $HNO_3$ due to the penetration of $TiO_2$. From XRD data, a single crystal structure of anatase peak was observed in diffraction patterns for the AC coated with titanium complexes. From the SEM results, almost all particles were aggregated with each other at the carbon surface and AC was covered with $TiO_2$ particles in all of the samples. The EDX spectra show the presence of C, O, Ti and other elements. It was also observed a decreasing of amount of C content with increasing Ti and O content from the EDX. The results of FT-IR revealed that the modified AC contained more surface oxygen bearing groups than that of the original AC. The effect of surface acidity and basity calculated from Boehm titration method was also evaluated from correlations as a function of NaOH, $NaHCO_3$, and $Na_2CO_3$ uptake. The surface modification of AC by $HNO_3$ leads to an increase in the catalytic efficiency of AC/$TiO_2$ catalysts, and the catalytic efficiency increases with increasing of $HNO_3$ concentration.

Intramolecular Ion-Molecule Reactions within Ti+(CH3COCH3)n Heteroclusters: Oxidation Pathway via C=O Bond Activation

  • Koo, Young-Mi;Hong, Ki-Ryong;Kim, Tae-Kyu;Jung, Kwang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.953-958
    • /
    • 2010
  • A laser ablation-molecular beam/reflectron time-of-flight mass spectrometric technique was used to investigate the ion-molecule reactions that proceed within $Ti^+(CH_3COCH_3)_n$ heterocluster ions. The reactions of $Ti^+$ with $CH_3COCH_3$ clusters were found to be dominated exclusively by an oxidation reaction, which produced $TiO^+(CH_3COCH_3)_n$ clusters. These ions were attributed to the insertion of a $Ti^+$ ion into the C=O bond of the acetone molecule within the heteroclusters, followed by $C_3H_6$ elimination. The mass spectra also indicated the formation of minor sequences of heterocluster ions with the formulas $Ti^+(C_3H_4O)(CH_3COCH_3)_n$ and $TiO^+(OH)(CH_3COCH_3)_n$, which could be attributed to C-H bond insertion followed by $H_2$ elimination and to the sequential OH abstraction by the $TiO^+$ ion, respectively. Density functional theory calculations were carried out to model the structures and binding energies of both the association complexes and the relevant reaction products. The reaction pathways and energetics of the $TiO^+\;+\;CH_2CHCH_3$ product channel are presented.