DOI QR코드

DOI QR Code

Theoretical Insights into Oxygen Vacancies in Reduced Bulk TiO2: A Mini Review

벌크 TiO2 산소 공공 결함에 대한 이론적 이해

  • Jaehyuk Choi (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Junho Lee (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Taehun Lee (Division of Advanced Materials Engineering, Jeonbuk National University)
  • 최재혁 (전북대학교 신소재공학부 전자재료공학전공) ;
  • 이준호 (전북대학교 신소재공학부 전자재료공학전공) ;
  • 이태훈 (전북대학교 신소재공학부 전자재료공학전공)
  • 투고 : 2024.03.05
  • 심사 : 2024.03.22
  • 발행 : 2024.05.01

초록

Titanium dioxide (TiO2) holds significant scientific and technological relevance as a key photocatalyst and resistive random-access memory, demonstrating unique physicochemical properties and serving as an n-type semiconductor. Understanding the density and arrangement of oxygen vacancies (VOs) is crucial for tailoring TiO2's properties to diverse technological needs, driving increased interest in exploring oxygen vacancy complexes and superstructures. In this mini review, we summarize the recent understandings of the fundamental properties of oxygen vacancies in bulk rutile (R-TiO2) and anatase (A-TiO2) based on DFT and beyond method. We specifically focus on the excess electrons and their spatial arrangement of disordered single VO in bulk R and A-TiO2, aligned with the experimental findings. We also highlight the theoretical works on investigating the geometries and stabilities of ordered VOs complexes in bulk TiO2. This comprehensive review provides insights into the fundamental properties of excess electrons in reduced TiO2, offering valuable perspectives for future research and technological advancements in TiO2-based devices.

키워드

참고문헌

  1. X. Pan, M. Q. Yang, X. Fu, N. Zhang, and Y. J. Xu, Nanoscale, 5, 3601 (2013). doi: https://doi.org/10.1039/c3nr00476g
  2. A. Sarkar and G. G. Khan, Nanoscale, 11, 3414 (2019). doi: https://doi.org/10.1039/C8NR09666J
  3. Z. Wang, R. Lin, Y. Huo, H. Li, and L. Wang, Adv. Funct. Mater., 32, 2109503 (2022). doi: https://doi.org/10.1002/adfm.202109503
  4. D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X. S. Li, G. S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, Nat. Nanotechnol., 5, 148 (2010). doi: https://doi.org/10.1038/nnano.2009.456
  5. D. Knez, G. Drazic, S. K. Chaluvadi, P. Orgiani, S. Fabris, G. Panaccione, G. Rossi, and R. Ciancio, Nano Lett., 20, 6444 (2020). doi: https://doi.org/10.1021/acs.nanolett.0c02125
  6. L. Liborio and N. Harrison, Phys. Rev. B, 77, 104104 (2008). doi: https://doi.org/10.1103/PhysRevB.77.104104
  7. B. Magyari-Kope, S. G. Park, H. D. Lee, and Y. Nishi, J. Mater. Sci., 47, 7498 (2012). doi: https://doi.org/10.1007/s10853-012-6638-1
  8. A. Janotti, C. Franchini, J. B. Varley, G. Kresse, and C. G. Van de Walle, Phys. Status Solidi RRL, 7, 199 (2013). doi: https://doi.org/10.1002/pssr.201206464
  9. A. Janotti, J. B. Varley, P. Rinke, N. Umezawa, G. Kresse, and C. G. Van de Walle, Phys. Rev. B, 81, 085212 (2010). doi: https://doi.org/10.1103/PhysRevB.81.085212
  10. P. Deak, B. Aradi, and T. Frauenheim, Phys. Rev. B, 86, 195206 (2012). doi: https://doi.org/10.1103/PhysRevB.86.195206
  11. W. J. Yin, B. Wen, C. Zhou, A. Selloni, and L. M. Liu, Surf. Sci. Rep., 73, 58 (2018). doi: https://doi.org/10.1016/j.surfrep.2018.02.003
  12. H. Y. Lee, S. J. Clark, and J. Robertson, Phys. Rev. B, 86, 075209 (2012). doi: https://doi.org/10.1103/PhysRevB.86.075209
  13. A. Malashevich, M. Jain, and S. G. Louie, Phys. Rev. B, 89, 075205 (2014). doi: https://doi.org/10.1103/PhysRevB.89.075205
  14. C. Franchini, M. Reticcioli, M. Setvin, and U. Diebold, Nat. Rev. Mater., 7, 250 (2022). doi: https://doi.org/10.1038/s41578-022-00424-1
  15. M. Gerosa, C. E. Bottani, L. Caramella, G. Onida, C. Di Valentin, and G. Pacchioni, J. Chem. Phys., 143, 134702 (2015). doi: https://doi.org/10.1063/1.4931805
  16. P. Deak, B. Aradi, and T. Frauenheim, Phys. Rev. B, 92, 045204 (2015). doi: https://doi.org/10.1103/PhysRevB.92.045204
  17. S. Moser, L. Moreschini, J. Jacimovic, O. S. Barisic, H. Berger, A. Magrez, Y. J. Chang, K. S. Kim, A. Bostwick, E. Rotenberg, L. Forro, and M. Grioni, Phys. Rev. Lett., 110, 196403 (2013). doi: https://doi.org/10.1103/PhysRevLett.110.196403
  18. B. Magyari-Kope, S. G. Park, H. D. Lee, and Y. Nishi, J. Mater. Sci., 47, 7498 (2012). doi: https://doi.org/10.1007/s10853-012-6638-1
  19. L. Zhao, B. Magyari-Kope, and Y. Nishi, Phys. Rev. B, 95, 054104 (2017). doi: https://doi.org/10.1103/PhysRevB.95.054104
  20. T. Lee and A. Selloni, J. Phys. Chem. C, 127, 627 (2023). doi: https://doi.org/10.1021/acs.jpcc.2c06806
  21. W. Heckel, M. Wehlau, S. B. Maisel, T. Frauenheim, J. M. Knaup, and S. Muller, Phys. Rev. B, 92, 214104 (2015). doi: https://doi.org/10.1103/PhysRevB.92.214104
  22. M. C. Sahu, S. K. Mallik, S. Sahoo, S. K. Gupta, R. Ahuja, and S. Sahoo, J. Phys. Chem. Lett., 12, 1876 (2021). doi: https://doi.org/10.1021/acs.jpclett.1c00121
  23. M. Chiesa, S. Livraghi, E. Giamello, E. Albanese, and G. Pacchioni, Angew. Chem., 129, 2648 (2017). doi: https://doi.org/10.1002/ange.201610973
  24. S. R. Kavanagh, A. Walsh, and D. O. Scanlon, ACS Energy Lett., 6, 1392 (2021). doi: https://doi.org/10.1021/acsenergylett.1c00380
  25. J. R. De Lile, A. Bahadoran, S. Zhou, and J. Zhang, Adv. Theory Simul., 5, 2100244 (2021). doi: https://doi.org/10.1002/adts.202100244
  26. J. A. Quirk, V. K. Lazarov, and K. P. McKenna, J. Phys. Chem. C, 124, 23637 (2020). doi: https://doi.org/10.1021/acs.jpcc.0c06052
  27. H. Cheng and A. Selloni, J. Chem. Phys., 131, 054703 (2009). doi: https://doi.org/10.1063/1.3194301
  28. Z. W. Wang, D. J. Shu, M. Wang, and N. B. Ming, Surf. Sci., 606, 186 (2012). doi: https://doi.org/10.1016/j.susc.2011.09.014
  29. C. Di Valentin, G. Pacchioni, and A. Selloni, J. Phys. Chem. C, 113, 20543 (2009). doi: https://doi.org/10.1021/jp9061797
  30. K. Yang, Y. Dai, B. Huang, and Y. P. Feng, Phys. Rev. B, 81, 033202 (2010). doi: https://doi.org/10.1103/PhysRevB.81.033202