• Title/Summary/Keyword: Titanium Nitride (TiN)

Search Result 112, Processing Time 0.028 seconds

Poly(vinyl alcohol)-based Polymer Electrolyte Membrane for Solid-state Supercapacitor (고체 슈퍼캐퍼시터를 위한 폴리비닐알콜 고분자 전해질막)

  • Lee, Jae Hun;Park, Cheol Hun;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.30-36
    • /
    • 2019
  • In this study, we reported a solid-state supercapacitor consisting of titanium nitride (TiN) nanofiber and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT-PSS) conducting polymer electrode and poly(vinyl alcohol) (PVA)-based polymer electrolyte membrane. The TiN nanofiber was selected as electrode materials due to high electron conductivity and 2-dimensional structure which is beneficial for scaffold effect. PEDOT-PSS is suitable for organic/inorganic composites due to good redox reaction with hydrogen ions in electrolyte and good dispersion in solution. By synergetic effect of TiN nanofiber and PEDOT-PSS, the PEDOT-PSS/TiN electrode showed higher surface area than the flat Ti foil substrate. The PVA-based polymer electrolyte membrane could prevent leakage and explosion problem of conventional liquid electrolyte and possess high specific capacitance due to the fast ion diffusion of small $H^+$ ions. The specific capacitance of PEDOT-PSS/TiN supercapacitor reached 75 F/g, which was much higher than that of conventional carbon-based supercapacitors.

The Adhesion of TiN Coatings on Plasma-nitrided Steel (이온 질화층이 TiN 박막의 밀착성에 미치는 영향)

  • Ko, K.M.;Kim, H.W.;Kim, M.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.4
    • /
    • pp.1-14
    • /
    • 1991
  • In PECVD(Plasma-Enhanced Chemical Vapor Deposition) process, titanium nitride is thin and its adhesion is poor for the protective coatings. Therefore it has been studied that intermediate layer forms between substrate and TiN thin film. Using R.F. plasma nitriding, nitride layer was first formed, then TiN thin film coated by PECVD. The chemical composition of the coatings has been characterized using AES, EDS and their crystallographic structure by means of XRD. Mechanical properties such as microhardness and film adhesion have also been determined by vickers hardness test, scratch test and indentation test. As a result, there was no difference in chemical composition and structure between the TiN deposition only and the composite of TiN deposition on nitrided steel. It was found that nitrided substrate increased the hardness of TiN coatings and was beneficial in preventing the plastic deformation in the substrate. Therefore the effective load bearing capacity of the TiN coatings on nitrided steel was increased and their adhesion was improved as well. According to the results of this study, the processes that lead to the formation of composite layers characterized by good working properties, i.e., high microhardness, adhesion and resistance to deformation.

  • PDF

Structural and Electrical Properties of Reactively Sputtered Titanium Nitride Films (DC 반응성 스퍼터링된 TiN 박막의 구조적 및 전기적 특성)

  • 류성용;오원욱;백수현;신두식;오재응;김영남;심태언;이종길
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.8
    • /
    • pp.49-55
    • /
    • 1992
  • We Have investigated the properties of the titanium nitrite films widely used in VLSI devices as diffusion barrier in Al-based metallization. TiN films were formed by reactive sputtering from Ti target in Ar-N$_2$ mixtures, varying deposition parameters such as N$_2$ partial pressure, substrate temperature, power, and total pressure. All the samples received the heat treatment at 45$0^{\circ}C$ for 30 min. The resulting films are characterized by mechanical stylus($\alpha$-step), x-ray diffraction(XRD), scanning electron microscopy(SEM), and four point probe method. The Tin film properties strongly depend on the deposition condition. The stoichiometry and Ti deposition rate are critically affected by nitrogen partial pressure, and the resistivity, in particular, is dependent on both the substrate temperature and sputtering power.

  • PDF

Effects of CrN and TiN Coating by Hydrogen Embrittlement of Aluminum Alloys for Hydrogen Valves of Hydrogen Fuel Cell Vehicles on Mechanical Properties (수소연료전지 자동차의 수소밸브용 알루미늄 합금의 수소취화에 의한 기계적 특성에 미치는 CrN과 TiN 코팅의 영향)

  • Ho-Seong Heo;Dong-Ho Shin;Seong-Jong Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.232-241
    • /
    • 2023
  • The mechanical properties of the hydrogen valve responsible for supplying and blocking hydrogen gas in a hydrogen fuel cell electric vehicle (FCEV) were researched. Mechanical properties by hydrogen embrittlement were investigated by coating chromium nitride (CrN) and titanium nitride (TiN) on aluminum alloy by arc ion plating method. The coating layer was deposited to a thickness of about 2 ㎛, and a slow strain rate test (SSRT) was conducted after hydrogen embrittlement to determine the hydrogen embrittlement resistance of the CrN and TiN coating layers. The CrN-coated specimen presented little decrease in mechanical properties until 12 hours of hydrogen charging due to its excellent resistance to hydrogen permeation. However, both the CrN and TiN-coated specimens exhibited deterioration in mechanical properties due to the peeling of the coating layer after 24 hours of hydrogen charging. The specimens coated at 350 ℃ presented a significant decrease in ultimate tensile strength due to abnormal grain growth.

고집적회로에서 TiN/Ti Diffusion Barrier의 열처리에 따른 계면반응 및 구조변화에 대한 연구

  • Yu, Seong-Yong;Choi, Jin-Seog;Paek, Su-Hyon;Oh, Jae-Eung
    • ETRI Journal
    • /
    • v.13 no.4
    • /
    • pp.58-69
    • /
    • 1991
  • 고집적회로에서 A1 금속공정의 diffusion barrier로 널리 사용되는 titanium nitride의 성질을 조사하였다. 실제 회로 구조의 열적 안정성을 관찰하기 위하여 준비된 TiN/Ti다층 barrier를 $600^{\circ}C$까지 열처리하여 x-ray photoelectron spectroscopy (XPS), cross-sectional transmission electron microscopy(XTEM) 등으로 분석하였다. 열처리 온도가 증가됨에 따라 oxygen은 TiN 층의 표면과 pure-Ti 층에 pile up 된다. TiN 층의 표면에서는 $600^{\circ}C$열처리시 TiN이 분해되어 완전히 $TiO_2$가 형성되며, TiN 층 내에서는 oxygen 함량은 열처리 온도의 증가에 따라 커지고 이때 형성되는 Ti-oxide는 $TiO_2$ 보다 TiO, $Ti_2$$O_3$ 상태로 존재하게 된다. Pure-Ti 층은 열처리시 두개의 층으로 나누어 지는 데, 표면에서 침투하는 oxygen과 pure-Ti이 반응하여 Ti-oxide 층이 생기며 실리콘 기판과의 반응으로 Ti-silicide를 형성한다. $600^{\circ}C$에서 모든 Ti 층이 반응으로 소모되고 열적 stress, Ti-silicide의 grain growth, oxygen의 침입으로 TiN 층에 blistering이 발생한다.

  • PDF

Pyrolytic Conversion of Blended Precursors into Ti-Al-N Ceramic Composites

  • Cheng, Fei;Sugahara, Yoshiyuki;Kuoda, Kazuyuki
    • The Korean Journal of Ceramics
    • /
    • v.6 no.1
    • /
    • pp.32-36
    • /
    • 2000
  • Pyrolytic preparations of Ti-Al-N ceramics from three blended precursors were investigated. The precursors were prepared stirring ($HA1N^{i}Pr_m$ and an aminolysis product of $Ti(NMe_2)_4$ with $MeHNCH_2CH_2$NHMe in $C_6/H_6$ . IR and $^1H\;NMR $analyses suggested that essentially no Ti-N-Al bonds were present in the precursors. Pyrolysis of the precursors under $NH_3-N_2$led to the formation of brown solids with ceramic yields of about 30%, and the Ti-Al ratios in the pyrolyzed products were close to those of the precursors. XRD analysis of the pyrolyzed product from the precursor with Ti:Al=5:1 indicated the formation of a NaCl-type compound as the only crystalline phase. Pyrolysis of the precursor with Ti:Al=2:1 led to the formation of AlN besides the major NaCl-type compound. A ceramic composite containing AlN and the NaCl-type compound was formed by pyrolysis of the precursor with Ti:Al=1:2.

  • PDF

Microstructure change of TiN films prepared by oblique angle (빗각 증착으로 코팅된 다층 TiN 박막의 특성)

  • Song, Min-A;Yang, Ji-Hun;Jeong, Jae-Hun;Kim, Seong-Hwan;Jeong, Jae-In
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.233-233
    • /
    • 2014
  • 질화 티타늄(Titanium Nitride)은 뛰어난 물리적 특성이 있어 내마모 재료의 표면처리 분야에 많이 사용되고 있다. 본 연구에서는 음극 아크 방전을 이용하여 빗각 증착을 실시하고 증착 시 기판에 bias 인가 여부에 따라 주상정의 방향성이 변하는 단층 및 다층의 TiN 박막을 제조하였으며 동일한 두께의 다양한 다층구조에서 경도의 증가를 확인하였다.

  • PDF