• Title/Summary/Keyword: Titanium

Search Result 3,447, Processing Time 0.032 seconds

Effects of Holding Temperatures on Microstructure and Mechanical Properties of CP Titanium and Ti-6Al-4V Alloy and Its low Temperature Brazing Characteristics (열노출 온도에 따른 CP 티타늄, Ti-6Al-4V 합금의 미세조직/기계적성질 변화 및 저온브레이징 특성)

  • Sun, J.H.;Shin, S.Y.;Hong, J.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.1
    • /
    • pp.3-9
    • /
    • 2010
  • Titanium and its alloys were brazed in the range of $850-950^{\circ}C$ within 10 min. of brazing time using expensive infra red or other heating methods. However, brazing time needs to be extended to get temperature-uniformity for mass production by using continuous belt type furnace or high vacuum furnace with low heating rate. This study examined effects of holding temperature for 60 min, on microstructure and mechanical properties of titanium alloys. Mechanical properties of titanium alloys were drastically deteriorated with increasing holding temperature followed by grain growth. Maximum holding temperatures for CP (commercial pure) titanium and Ti-6Al-4V were confirmed as $800^{\circ}C$ and $850^{\circ}C$, respectively. Both titanium alloys were successfully brazed at $800^{\circ}C$ for 60 min. with the level of base metal strengths by using Zr based filler metal, $Zr_{54}Ti_{22}Ni_{16}Cu_8$.

Synthesis of Titanium Carbide Nano Particles by the Mechano Chemical Process

  • Ahn, In-Shup;Park, Dong-Kyu;Lee, Yong-Hee
    • Journal of Powder Materials
    • /
    • v.16 no.1
    • /
    • pp.43-49
    • /
    • 2009
  • Titanium carbides are widely used for cutting tools and grinding wheels, because of their superior physical properties such as high melting temperature, high hardness, high wear resistance, good thermal conductivity and excellent thermal shock resistance. The common synthesizing method for the titanium carbide powders is carbo-thermal reduction from the mixtures of titanium oxide($TiO_2$) and carbon black. The purpose of the present research is to fabricate nano TiC powders using titanium salt and titanium hydride by the mechanochemical process(MCP). The initial elements used in this experiment are liquid $TiCl_4$(99.9%), $TiH_2$(99.9%) and active carbon(<$32{\mu}m$, 99.9%). Mg powders were added to the $TiCl_4$ solution in order to induce the reaction with Cl-. The weight ratios of the carbon and Mg powders were theoretically calculated. The TiC and $MgCl_2$ powders were milled in the planetary milling jar for 10 hours. The 40 nm TiC powders were fabricated by wet milling for 4 hours from the $TiCl_4$+C+Mg solution, and 300 nm TiC particles were obtained by using titanium hydride.

Comparative study on long-term stability in mandibular sagittal split ramus osteotomy: hydroxyapatite/poly-ʟ-lactide mesh versus titanium miniplate

  • Park, Young-Wook;Kang, Hyun-Sik;Lee, Jang-Ha
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.41
    • /
    • pp.8.1-8.6
    • /
    • 2019
  • Background: Resorbable devices have recently been adopted in the field of orthognathic surgery with controversies about their postoperative skeletal stability. Hence, we determined the long-term skeletal stability of unsintered hydroxyapatite/poly-ʟ-lactic acid (HA/PLLA) mesh for osteofixation of mandibular sagittal split ramus osteotomy (SSRO), and compared it with that of titanium miniplate. Methods: Patients were divided into resorbable mesh and titanium miniplate fixation groups. A comparative study of the change in the mandibular position was performed with preoperative, 1-day, 6-month, and 2-year postoperative lateral cephalograms. Results: At postoperative 6 months-compared with postoperative 1 day, point B (supra-mentale) was significantly displaced anteriorly in the titanium-fixation group. Moreover, at postoperative 2 years-compared with postoperative 6 months, point B was significantly displaced inferiorly in the titanium-fixation. However, the HA/PLLA mesh-fixation group did not show any significant change with respect to point B postoperatively. Conclusions: The HA/PLLA mesh-fixation group demonstrated superior long-term skeletal stability with respect to the position of mandible, when compared with the titanium-fixation group.

Biomimetic Apatite Precipitated on the Surface of Titanium Powder (티타늄분말의 표면에 석출된 생체모방 아파타이트)

  • Kim, Jong-Hee;Sim, Young-Uk;Yang, Tae-Young;Yoon, Seog-Young;Park, Hong-Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.127-131
    • /
    • 2010
  • Biomimetic whisker-like apatite was formed on thermally and NaOH-treated titanium powder in a simulated body fluid (SBF). In the early process of the SBF immersion, the surface structure of the titanium powder was loosened, possibly due to the dissolution of $Na^+$ ions on the surface of the titanium powder into SBF. When immersed for 7 days in SBF, fine precipitates appeared on the titanium surfaces; the coating layer (<200 nm in thickness) consisted of nanostructured, amorphous whisker-like and particulate phase, observed by TEM. With the extension of the immersion time to 16 days, the chrysanthemum flower type morphology of carbonated hydroxyapatite with a nanocrystallinity was developed on the surface of the titanium powder.

A Study on the Grinding of Titanium Alloy, Part2 : Grinding characteristics by using Superabrasives (티타늄 합금의 연삭에 관한 연구, Part2 : 초연마재를 사용한 연삭특성)

  • Kim, S. H.;Choi, H.;lee, J. C.;Cheong, S. H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1076-1079
    • /
    • 2001
  • This investigation reports the grinding characteristics of titanium alloy(Ti-6Al-4V). Grinding experiments were performed at various grinding conditions. The grinding forces and grinding force ratio were measured to investigate the grindability of titanium alloy with the Diamond and CBN wheel. To investigate the grinding characteristics of titanium alloy grinding force ratio and grinding ratio were measured. Surface profile of wheel was also measured with tracer and the ground surfaces and chip were observed with SEM. Grinding-ratio of titanium alloy was much lower than that of other materials. Grinding-ratio of titanium alloy with Diamond wheel was almost six times larger than that with CBN wheel.

  • PDF

A TISSUE RESPONSE TO THE TITANIUM ALLOY (Ti-13Zr-6Nb) IN VIVO

  • Kim Chang-Su;Lee Seok-Hyung;Shin Sang-Wan;Suh Kyu-Won;Ryu Jae-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.6
    • /
    • pp.619-627
    • /
    • 2004
  • Statement of problem. Mechanisms of tissue-implant interaction and the effect of the implant surface on the behavior of cells has not yet been clarified. Purpose. This study was performed to investigate the tissue reaction to the titanium alloy submerged into rat peritoneum in vivo. Materials and methods. Titanium alloys (titanium-13Zirconium-6Niobium) were inserted inside the peritoneal cavity of Sprague Dawley rats. After 3 months, the tissue formed around the inserted titanium alloys were examined with a light-microscope. Tissue reaction around the material was analyzed by confocal microscopy to evaluate their biocompatibility in a living body. Results. In in vivo study, foreign body type multinucleated giant cells were found in the fibrous tissue formed as a reaction to the foreign material (4 in 20 cases), but the inflammatory reaction was very weak. After experiment, the contaminants of biomaterials was removed from living tissue. In confocal microscopy, we observed that the staining of vinculin and actin showed mixed appearance. In a few cases, we found that the staining of vinculin and beta-catenin showed the prominent appearance. Conclusion. We found that titanium-13Zirconium-6Niobium alloy was an excellent biomaterial.

In-situ Synthesis and Investment Casting of Titanium Matrix (TiC+TiB) Hybrid Composites (Ti기 (TiC+TiB) 하이브리드 복합재료 반응생성합성 및 정밀주조)

  • Sung, Si-Young;Park, Keun-Chang;Lee, Sang-Hwa;Kim, Young-Jig
    • Journal of Korea Foundry Society
    • /
    • v.24 no.3
    • /
    • pp.159-164
    • /
    • 2004
  • The aim of the present work is to investigate the possibility of in-situ synthesis and net-shape forming of the titanium matrix (TiC+TiB) hybrid composites using a casting route. From the scanning electron microscopy, electron probe micro-analyzer, X-ray diffraction and thermodynamic calculations, the spherical TiC and needle like TiB reinforced hybrid titanium matrix composites could be obtained in-situ by the conventional melting and casting route between titanium and $B_4C$. No melt-mold reaction occurred between the titanium matrix (TiC+TiB) hybrid composites and the SKK mold, since the mold is consisted with interstitial and substitutional metal-mold reaction products. Not only the sound in-situ synthesis but also the economic net-shape forming of the titanium matrix (TiC+TiB) hybrid composites could be possible by the conventional casting route.

Sustainability Analysis in Titanium Alloy Machining (항공용 티타늄 합금 가공 공정의 지속가능성 평가)

  • Lee, Jin-Hyeok;Kim, Ho-Yung;Yoon, Hae-Sung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.73-81
    • /
    • 2019
  • Titanium alloys have been spotlighted in numerous industries owing to their superior mechanical properties, such as high specific strength. However, the high heat and wear resistance of titanium alloys also lower their machinability and limit the wider application of the material. Many researchers have investigated the processing of titanium alloys, and it is required to evaluate the effectiveness and efficiency of developed technologies. From this perspective, this research studied sustainability in titanium alloy machining. The power consumption of the machine was measured during the process and analyzed in terms of process parameters and individual machine components. Here, an end mill specially designed for titanium was also investigated and compared with a general-purpose cutting tool. Based on the experimental results, a model was constructed to predict the power consumption of the overall process. It is expected that this study will contribute to the more effective and efficient processing of titanium alloys.

Effects of Beating of Cotton Linter Pulps with Titanium Dioxide on Paper Properties (면섬유 고해 시 TiO2 혼합처리가 종이물성에 미치는 영향)

  • Kil, Jung-Ha;Shin, Hyeon-Sik;Lee, Jin-Ho;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.2
    • /
    • pp.27-32
    • /
    • 2013
  • To improve the physical properties, such as swelling and flexibility, of the cotton fiber, sodium hydroxide or cellulase was used for pretreatment before the beating process. Titanium dioxide was blended during beating process to improve the fibrillation of cotton fibers and even distribution of fillers to cotton fibers. Blending with titanium dioxide during beating process, led to improve the tensile strength and beating degree This treatment also improved the opacity, resulted by well dispersed titanium dioxide during blending. By the blending of titanium dioxide during beating process, similar impact of cotton fiber with cellulase or sodium hydroxide pretreatment was achieved. To improve the tensile strength and opacity of cotton paper simultaneously, titanium dioxide blending in during beating process was found as effective treatment.

The Characteristic of Titanium Composites Including of Nano-sized TiNx for Stack Separator

  • Park, Sung-Bum;Ban, Tae-Ho;Woo, Heung-Sik;Kim, Sung-Jin
    • Journal of Powder Materials
    • /
    • v.17 no.2
    • /
    • pp.123-129
    • /
    • 2010
  • The fabrication of interconnect from titanium powders and $TiN_x$ powders is investigated. Corrosion-resistant titanium and $TiN_x$ are used as reinforcement in order to reveal high heat and corrosion resistance at the elevated temperature. We fabricated the plates for interconnect reinforced with $TiN_x$ by mixing titanium powders with 10 wt.% of nano-sized $TiN_x$. Spark Plasma Sintering (SPS) was chosen for the sintering of these composites. The plate made of titanium powders and $TiN_x$ powders demonstrates higher corrosion resistance than that of the plate of titanium powders alone. The physical properties of specimens were analyzed by performing hardness test and biaxial strength test. The electrochemical properties, such as corrosion resistance and hydrogen permeability at high temperature, were also investigated. The microstructures of the specimens were investigated by FESEM and profiles of chemical compositions were analyzed by EDX.