• Title/Summary/Keyword: Titania films

검색결과 34건 처리시간 0.025초

Effect of anodic potentials for fabricating co-doped TiO2 on the photocatalytic activity

  • Lee, Seunghyun;Han, Jae Ho;Oh, Han-Jun;Chi, Choong-Soo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 한국표면공학회 2012년도 춘계학술발표회 논문집
    • /
    • pp.295-295
    • /
    • 2012
  • The $TiO_2$ films were prepared in the $H_2SO_4$ solution containing $NH_4F$ at different anodic voltages, to compare the photocatalytic performances of titania for purification of waste water. The microstructure was characterized by a Field-emission scanning electron microscopy (FE-SEM) and X-ray diffractometry (XRD). Chemical bonding states and co-doped elements of F and N were analyzed using surface X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of the co-doped $TiO_2$ films was analyzed by the degradation of aniline blue solution. From the result of diffuse reflectance absorption spectroscopy(DRS), it is indicated that the absorption edge of the F-N-codoped $TiO_2$ films shifted toward visible light area, and the photocatalytic reaction of $TiO_2$ was improved by doping an appropriate contents of F and N.

  • PDF

Preparation of Porous TiO2 Thin Films by Poly(vinyl chloride)-graft-poly(N-vinyl pyrrolidone) and Their Applications to Dye-sensitized Solar Cells

  • Yeon, Seung-Hyeon;Patel, Rajkumar;Koh, Jong-Kwan;Ahn, Sung-Hoon;Kim, Jong-Hak
    • Journal of the Korean Electrochemical Society
    • /
    • 제14권2호
    • /
    • pp.83-91
    • /
    • 2011
  • Mesoporous titanium dioxide ($TiO_2$) thin films were prepared using poly(vinyl chloride)-graft-poly(N-vinyl pyrrolidone) (PVC-g-PVP) as a templating agent via sol-gel process. Grafting of PVC chains from PVC backbone was done by atom transfer radical polymerization (ATRP) technique. The successful grafting of PVP to synthesize PVC-g-PVP was checked by fourier-transform infrared spectroscopy (FT-IR) and gel permeation chromatography (GPC). The carbonyl group interaction of PVC-g-PVP graft copolymer with $TiO_2$ was confirmed by FT-IR. The porous morphologies of the $TiO_2$ films genereated after calcination at $450^{\circ}C$ was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The mesoporous $TiO_2$ films with 580 nm in thickness were used as a photoelectrode for solid state dye sensitized solar cell (DSSC) and showed an energy conversion efficiency of 1.05% at 100 $mW/cm^2$.

Preparation of Nano Titania Sols and Thin Films added with Transition Metal Elements (전이금속원소들이 첨가된 나노 티타니아 졸 및 코팅막 제조)

  • Lee K.;Lee N. H.;Shin S. H.;Lee H. G.;Kim S. J.
    • Korean Journal of Materials Research
    • /
    • 제14권9호
    • /
    • pp.634-641
    • /
    • 2004
  • The photocatalytic performance of $TiO_2$ thin films coated on porous alumina balls using various aqueous $TiOCl_2$ solutions as starting precursors, to which 1.0 $mol\%$ transition metal ($Ni^{2+},\;Cr^{3+},\;Fe^{3+},\;Nb^{3+},\;and\;V^{5+}$) chlorides had been already added, has been investigated, together with characterizations for $TiO_2$ sols synthesized simultaneously in the same autoclave through hydrothermal method. The synthesized $TiO_2$ sols were all formed with an anatase phase, and their particle size was between several nm and 30 nm showing ${\zeta}-potential$ of $-25{\sim}-35$ mV, being maintained stable for over 6 months. However, the $TiO_2$ sol added with Cr had a much lower value of -potential and larger particle sizes. The coated $TiO_2$ thin films had almost the same shape and size as those of the sol. The pure $TiO_2$ sol showed the highest optical absorption in the ultraviolet light region, and other $TiO_2$ sols containing $Cr^{3+},\;Fe^{3+}\;and\;Ni^{2+}$ showed higher optical absorption than pure sol in the visible light region. According to the experiments for removal of a gas-phase benzene, the pure $TiO_2$ film showed the highest photo dissociation rate in the ultraviolet light region, but in artificial sunlight the photo dissociation rate of $TiO_2$ coated films containing $Cr^{3+},\;Fe^{3+}\;and\;Ni^{2+}$ was measured higher together with the increase of optical absorption by doping.

Chemical Mechanical Polishing (CMP) Characteristics of Ferroelectric BST Thin Film (강유전체막의 CMP 특성)

  • Park, Sung-Woo;Kim, Nam-Hoom;Lee, Woo-Sun;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.719-722
    • /
    • 2004
  • In this work, we applied the chemical mechanical polishing (CMP) process to the planarization of ferroelectric film. We compared the structural characteristics of BST $(Ba_{0.6}Sr_{0.4}TiO_3)$ films before and after the CMP process. Their dependence on slurry composition was also investigated. Finally, we suggest the self-developed titania $(TiO_2)$ mixed abrasive slurry (MAS) for FRAM applications. Our experimental results on the ferroelectric film are encouraging for the next generation of FRAM applications.

  • PDF

Chemical Doping of $TiO_2$ with Nitrogen and Fluorine and Its Support Effect on Catalytic Activity of CO Oxidation

  • Chakravarthy, G. Kalyan;Kim, Sunmi;Kim, Sang Hoon;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.142.2-142.2
    • /
    • 2013
  • The effect of substrate on catalytic activity of CO oxidation with transition metal Platinum nanoparticles on doped and undoped TiO2 was investigated. Titanium dioxide was doped chemically with non-metal anions including nitrogen and fluorine. Undoped TiO2 was synthesized via simple conventional sol-gel route. Thin films of titania were developed by spin coating technique and the characterization techniques SEM, XRD, UV-Vis Absorption Spectroscopy and XPS were carried out to examine the morphology of films, crystal phase, crystallites, optical properties and elemental composition respectively. XPS analysis from doped TiO2 confirmed that the nitrogen site were interstitial whereas fluorine was doped into TiO2 lattice substitutionally. Catalytic activity systems of Pt/doped-TiO2 and Pt/undoped-TiO2 were fabricated to reveal the strong metal-support interaction effect during catalytic activity of CO oxidation reactions. By arc plasma deposition technique, platinum nanoparticles with mean size of 2.7 nm were deposited on the thin films of doped and undoped titanium dioxide. The CO oxidation was performed with 40 Torr CO and 100 Torr O2 with 620 Torr He carrier gas. Turn over frequency was observed two to three folds enhancement in case of Pt/doped TiO2 as compared to Pt/TiO2. The electronic excitation and the oxygen vacancies that were formed with the doping process were the plausible reasons for the enhancement of catalytic activity.

  • PDF

Effects of Anodic Voltages of Photcatalytic TiO2 and Doping in H2SO4 Solutions on the Photocatalytic Activity (광촉매 TiO2의 황산용액에서의 양극산화전압과 도핑이 광촉매 활성에 미치는 영향)

  • Lee, Seung-Hyun;Oh, Han-Jun;Chi, Choong-Soo
    • Korean Journal of Materials Research
    • /
    • 제22권8호
    • /
    • pp.439-444
    • /
    • 2012
  • To compare the photocatalytic performances of titania for purification of waste water according to applied voltages and doping, $TiO_2$ films were prepared in a 1.0 M $H_2SO_4$ solution containing $NH_4F$ at different anodic voltages. Chemical bonding states of F-N-codoped $TiO_2$ were analyzed using surface X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of the co-doped $TiO_2$ films was analyzed by the degradation of aniline blue solution. Nanotubes were formed with thicknesses of 200-300 nm for the films anodized at 30 V, but porous morphology was generated with pores of 1-2 ${\mu}m$ for the $TiO_2$ anodized at 180 V. The phenomenon of spark discharge was initiated at about 98 V due to the breakdown of the oxide films in both solutions. XPS analysis revealed the spectra of F1s at 684.3 eV and N1s at 399.8 eV for the $TiO_2$ anodized in the $H_2SO_4-NH_4F$ solution at 180 V, suggesting the incorporation of F and N species during anodization. Dye removal rates for the pure $TiO_2$ anodized at 30 V and 180 V were found to be 14.0% and 38.9%, respectively, in the photocatalytic degradation test of the aniline blue solution for 200 min irradiation; the rates for the F-N-codoped $TiO_2$ anodized at 30 V and 180 V were found to be 21.2% and 65.6%, respectively. From the results of diffuse reflectance absorption spectroscopy (DRS), it was found that the absorption edge of the F-N-codoped $TiO_2$ films shifted toward the visible light region up to 412 nm, indicating that the photocatalytic activity of $TiO_2$ is improved by appropriate doping of F and N by the addition of $NH_4F$.

Reproducible Synthesis of Periodic Mesoporous TiO2 Thin Film (재현성 있는 메조포러스 TiO2 박막의 제조에 대한 연구)

  • Hur, Jae Young;Lee, Hyung Ik;Park, Young-Kwon;Joo, Oh-Shim;Bae, Gwi-Nam;Kim, Ji Man
    • Korean Chemical Engineering Research
    • /
    • 제44권4호
    • /
    • pp.399-403
    • /
    • 2006
  • There has been numerous reports for the synthesis of mesoporous $TiO_2$ thin films due to not only the high surface area and regular mesoscale pores but also wide band gap and photo activity. However, the synthesis has been restricted by the limited reproducibility mainly due to the extraordinarily fast hydrolysis and condensation rate of titania precursors. In this report, molar composition of reaction batch (HCl/Ti and Ti/P123) and exterior condition (humidity and temperature) during coating and anealing process. Thereafter, the mesoporous $TiO_2$ thin films were characterized by XRD and TEM

Fabrication and Characterization of Dye-sensitized Solar Cells based on Anodic Titanium Oxide Nanotube Arrays Sensitized with Heteroleptic Ruthenium Dyes

  • Shen, Chien-Hung;Chang, Yu-Cheng;Wu, Po-Ting;Diau, Eric Wei-Guang
    • Rapid Communication in Photoscience
    • /
    • 제3권1호
    • /
    • pp.16-19
    • /
    • 2014
  • Anodic self-organized titania nanotube (TNT) arrays have a great potential as efficient electron-transport materials for dye-sensitized solar cells (DSSC). Herewith we report the photovoltaic and kinetic investigations for a series of heteroleptic ruthenium complexes (RD16-RD18) sensitized on TNT films for DSSC applications. We found that the RD16 device had an enhanced short-circuit current density ($J_{SC}/mAcm^{-2}=15.0$) and an efficiency of power conversion (${\eta}=7.2%$) greater than that of a N719 device (${\eta}=7.1%$) due to the increasing light-harvesting and the broadened spectral features with thiophene-based ligands. However, the device made of RD17 (adding one more hexyl chain) showed smaller $J_{SC}(14.1mAcm^{-2})$ and poorer ${\eta}(6.8%)$ compare to those of RD16 due to smaller amount of dye-loading and less efficient electron injection for the RD17 device than for the RD16 device. For the RD18 dye (adding one more thiophene unit and one more hexyl chain), we found that the device showed even lower $J_{SC}(13.2mAcm^{-2}) $ that led to a poorest device performance (${\eta}=6.2%$) for the RD18 device. These results are against to those obtained from the same dyes sensitized on $TiO_2$ nanoparticle films and they can be rationalized according to the electron transport kinetics measured using the methods of charge extraction and transient photovoltage decays.

Photodegradation of VOCs by Using TiO$_2$-Coated POF (광촉매가 코팅된 플라스틱 광섬유을 이용한 VOC 광분해반응)

  • Ha, Jin-Wook;Joo, Hyun-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제4권3호
    • /
    • pp.199-203
    • /
    • 2003
  • In this study plastic optical fibers (POFs) were considered as light-transmitting media and substrates for the potential use in photocatalytic environmental purification system. After the characteristics of POFs in terms of light transmittance and absorption were determined at the beginning, the further investigation was performed through the photocatalytic degradation of trichloroethylene (TCE), iso-propanol and etc. with TiO$_2$-coated optical fiber reactor systems (POFR). It is concluded that the use of POFs is preferred to quartz optical fibers (QOFs) since the advantages such as ease of handling, lower cost, relatively reasonable light attenuation at the wavelength of near 400nm can be obtained. Various geometrical reactor shapes have been constructed and applied for the last one and half years. For the use of POF in water phase treatment, however, more detailed scientific and engineering aspects should be envisaged. This case requires a suitable mixture to obtain more stable and innocuous immobilization of photocatalyst on POF. To overcome this disadvantage, metal-organic chemical vapor deposition (MOCVD) was conducted in a fluidized bed to deposit thin films of titania on glass and alumina beads. Those can be used as photocatalysis for the removal of pollutants especially in liquid phases.

  • PDF