• Title/Summary/Keyword: Titanate powder

Search Result 99, Processing Time 0.026 seconds

Morphology of Barium Titanyl Oxalate Produced by Homogeneous Precipitation from Acidic Solution of Dimethyl Oxalate (Dimethyl Oxalate에 의한 균일 침전법으로 생성된 Barium Titanyl Oxalate의 형태학적 연구)

  • Min, Chonkyu;Lee, Chul
    • Analytical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.203-208
    • /
    • 1997
  • Barium titanyl oxalate(BTO) was precipatated by utilizing the thermal decomposition of dimethyl oxalate in acidic aqueous solution having $BaCl_2$ and $TiCl_4$. Particle morphology of BTO was influeneced by the various experimental factors. i.e.. the faster rate to nucleation with higher temperature and the higher ratio of [DMO]/[$Ba^{2+}+Ti^{4+}$] was found to correspond to the faster rate of transformation of particle size distribution from unimodal to broad unimodal through bimodal. The BT powder obtained by calcination at $900^{\circ}C$ in air consists of larger particles than BT generated by general coprecipitation method and shows tetragonal symmetry. The stirring during reaction was also found to have much effect upon characteristics of BTO and BT.

  • PDF

Preparation of Ferroelectric Barium Titanate Fine Particles by Hydrothermal Method and Their Dielectric Properties -Variation of Dielectric Properties and Phase Transition by Heat Treatment- (강유전성 티탄산바륨 극미립자의 수열합성과 그 유전특성 - 열처리에 의한 상전이 및 유전 특성 변화 -)

  • Um, Myeong-Heon;Lee, Jin-Sik;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.817-821
    • /
    • 1998
  • $BaTiO_3$ particles were prepared using $Ba(OH)_2{\cdot}8H_2O$ and $Ti(OC_2H_5)O_4$ by the hydrothermal method and their characteristics treated at the various temperatures have been investigated. This prepared $BaTiO_3$ powder includes a very small amount of $H_2O$ and $OH^-$. By increasing the treated temperature from $200^{\circ}C$ to $1000^{\circ}C$, the mean particle size was accordingly increased from $0.022{\mu}m$ to $0.072{\mu}m$ and the tetrogonality(c/a)was increased from 1.02 to 1.2 so that the phase transition to tetroganal takes place. $BaTiO_3$ sintered at $1250^{\circ}C$ after heat treatment at $400^{\circ}C$ for 3 hrs showed a specific dielectric constant of 8120 and surface activation energy was 9680 kcal/mol.

  • PDF

Curie Temperature and Tunable Dielectric Properties of Barium Strontium Titanate Thick Films (티탄산 바륨 스트론튬 (BaxSr1-xTiO3) 후막의 상전이온도와 가변 유전특성)

  • Jeon, So-Hyun;Kim, In-Sung;Min, Bok-Ki;Song, Jae-Sung;Yoon, Jon-Do
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.7 s.290
    • /
    • pp.421-426
    • /
    • 2006
  • [ $(BaSr)TiO_3$ ] thick films were prepared by tape casting method, using $BaTiO_3\;and\;SrTiO_3$ powder slurry in order to investigate dielectric properties i.e. dielectric constant, ${\varepsilon}_r$, Curie temperature, $T_c$. Grain growth within $(BaSr)TiO_3$ thick films was observed with increasing weight ratio of $BaTiO_3$. This observation can be explained by phenomena of substitution of $Sr^{2+}$ ion for $Bi^{2+}$ ion in the $BaTiO_3$ system. Also, the Curie temperature in $(BaSr)TiO_3$ thick films was shifted to lower temperature range with increasing $ SrTiO_3$. Furthermore, Curie temperature having maximum dielectric constant was in the range of $-40^{\circ}C\;to\;30^{\circ}C$, and hence sharper phase transformation occurred at Curie temperature. There occurred decrease in tunability and k-factor of $(Ba_{0.6}Sr_{0.4})TiO_3$ calculated from the dielectric constant, ${\varepsilon}_r$ above Curie temperature. In addition, above the $60^{\circ}C$, phase fixation was observed. This means that internal stress relief occurred with increasing $90^{\circ}$ domains.

Synthesis and Hardness of Glass Ceramics for Dental Crown Prosthetic Application in the system CaO-MgO-SiO2-P2O5-TiO2 (치관 보철용 CaO-MgO-$SiO_2-P_2O_5-TiO_2$계 글라스 세라믹의 합성과 경도)

  • Chung, In-Sung;Kim, Kap-Jin;Cheong, HO-Keun;Lee, Jong-Il
    • Journal of Technologic Dentistry
    • /
    • v.21 no.1
    • /
    • pp.5-14
    • /
    • 1999
  • Glass ceramics for dental crown prosthesis were prepared by crystallization of CaO-MgO-SiO2-$P_2O_5-TiO_2$ glasses. Their crystallization behaviors have been investigated as a function of heattreatment temperature, holding time and chemical composition in relation to mechinical properties. Crystallization peak temperatures were determined by differential thermal analysis(DTA). Crystalline phases and mircostructures of heat-treated sample were determined by the means of powder X-ray diffraction(XRD) and scanning electron microscopy(SEM). The final crystalline phase assemblages and the microstructures of the samples were found to be dependent on glass compositions, heattreatment temperature, and holding time. 1st crystallization peak temperature(TP), affected strongly by apatite, was found to be increased or decreased. From the experiment, the following results were obtained : 1. The crystallization peak temperature($T_P$) formed by apatite increased until adding up to 9wt% $TiO_2$ to base glass composition, then decreased above that. 2. Apatite($Ca_{10}P_6O_{25}$), whitlockite(${\beta}-3CaO-P_2O_5$), $\beta$-wollastonite($CaSiO_3$), magnesium tianate($MaTiO_3$) and diopside(CaO-MgO-$2SiO_2$) crystal phase were precipitated in MgO-CaO-$SiO_2-TiO_2-P_2O_5$ glass system containing 9wt% and 11wt% of $TiO_2$ 3. Vickers hardness of samples increased with increasing heat-treatment temperature and Vickers hardness of S415T9 samples heat-treated at 1075 was approxi-mately 813Kg $mm^{-2}$ as maximum value. 4. Vickers hardness of samples increased due to precipitation of apatite, whitlockite, $\beta$-wollastonite, magnesium titanate, and diopside crystal phases within glass matrix.

  • PDF

Effects of Coupling Agents on the Rheological and Magnetic Properties of Plastic Ferrite Magnets (커플링제가 플라스틱 페라이트 자석의 레올로지와 자기특성에 미치는 영향)

  • 이석희;최준환;문탁진;정원용
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.5
    • /
    • pp.275-281
    • /
    • 1998
  • Effects of coupling agents on the rheological and magnetic properties of plastic ferrite magnets were investigated. Magnetic powder used was Sr-ferrite, and binder used was polypropylene (PP), and coupling agents used were ${\gamma}$-methacryloxypropyl trimethoxy silane (A174) and isopropyl triisostearoyl titanate (TTS). It was found that the addition of coupling agents to the PP/ferrite system reduced the melt viscosity and increased the magnetic properties considerably, and the treatment with TTS showed greater effect than A174 did. By comparison with that of the untreated one, the apparent viscosities of the mixtures treated with A174 and TTS decreased 23 % and 50%, respectively, at the shear rate of $1280\; sec^{-1}$ . Untreated plastic magnets showed remanent flux density $(B_r)$ of 1.89 kG and maximum energy energy product $(BH_{max})$ of 0.84 MGOe, and A174 treated magnets showed of Br 2.25 Kg and $BH_{max}$ of 1.23 MGOe. TTS treated magnets showed $B_r$ of 2.35 kG and $BH_{max}$ of 1.33 MGOe.

  • PDF

Microstructure properties with variation of doped amount $Pr_{2}O_{3}$ of BSCT ceramics ($Pr_{2}O_{3}$ 첨가량에 따른 BSCT 세라믹의 미세구조 특성)

  • Noh, Hyun-Ji;Lee, Sung-Gap;Park, Sang-Man;Yun, Sang-Eun;Kim, Ji-Eun;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1283-1284
    • /
    • 2007
  • The barium strontium calcium titanate((Ba,Sr,Ca)$TiO_3$) powders prepared by the sol-gel method and $MnCO_3$ as acceptor were mixed oxide method. The microstructure was investigated with variation of $Pr_{2}O_{3}$ amount. The BSCT powder and $Pr_{2}O_{3}$ were mixed with organic vehicle(Ferro. B75001). BSCT thick films were fabricated by the screen-printing method on alumina substrates. The bottom electrode was Pt and upper electrode was Ag, respectively. All BSCT thick films were sintered at $1420^{\circ}C$, for 2h. The result of the differential thermal analysis(DTA), exothermic peak at around $654^{\circ}C$ due to the formation of the polycrystalline perovskite phase. In the X-ray diffraction(XRD) patterns, all BSCT thick films showed the typical perovskite polycrystalline structure and no pyrochlore phase was dbserved. The microstructure investigated by scanning electron microscope(SEM). Pore and grain size of BSCT thick films were decreased with increasing amount of $Pr_{2}O_{3}$ dopant. And the average grain size and thickness of BSCT thick films doped with 0.1 mol% $Pr_{2}O_{3}$ was $3.09{\mu}m$, $60{\mu}m$, respectively. The relative dielectric constant decreased and dielectric loss decreased with increasing amount of $Pr_{2}O_{3}$ dopant, the values of the BSCT thick films no doped with $Pr_{2}O_{3}$ were 7443 and 4 % at 1 kHz, respectively.

  • PDF

Hybrid Fabrication of Screen-printed Pb(Zr,Ti)O3 Thick Films Using a Sol-infiltration and Photosensitive Direct-patterning Technique (졸-침투와 감광성 직접-패턴 기술을 이용하여 스크린인쇄된 Pb(Zr,Ti)O3 후막의 하이브리드 제작)

  • Lee, J.-H.;Kim, T.S.;Park, H.-H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.83-89
    • /
    • 2015
  • In this paper, we propose a fabrication technique for enhanced electrical properties of piezoelectric thick films with excellent patterning property using sol-infiltration and a direct-patterning process. To achieve the needs of high-density and direct-patterning at a low sintering temperature (< $850^{\circ}C$), a photosensitive lead zirconate titanate (PZT) solution was infiltrated into a screen-printed thick film. The direct-patterned PZT films were clearly formed on a locally screen-printed thick film, using a photomask and UV light. Because UV light is scattered in the screen-printed thick film of a porous powder-based structure, there are needs to optimize the photosensitive PZT sol infiltration process for obtaining the enhanced properties of PZT thick film. By optimizing the concentration of the photosensitive PZT sol, UV irradiation time, and solvent developing time, the hybrid films prepared with 0.35 M of PZT sol, 4 min of UV irradiation and 15 sec solvent developing time, showed a very dense with a large grain size at a low sintering temperature of $800^{\circ}C$. It also illustrated enhanced electrical properties (remnant polarization, $P_r$, and coercive field, $E_c$). The $P_r$ value was over four times higher than those of the screen-printed films. These films integrated on silicon wafer substrate could give a potential of applications in micro-sensors and -actuators.

Effect of Processing Parameters on the Microstructure and Band Gap Energy of 1D-Na2Ti6O13 (1D-Na2Ti6O13 합성 변수에 따른 미세구조 및 밴드 갭 에너지 변화)

  • Yun, Kang-Seop;Ku, Hye-Kyung;Kang, Woo-Seung;Kim, Sun-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.8
    • /
    • pp.664-669
    • /
    • 2012
  • Nano-structured one-dimensional $Na_2Ti_6O_{13}$ particles were synthesized by a molten salt process. Effects of processing parameters on the microstructure and band gap energy of the $Na_2Ti_6O_{13}$ powder were studied in this paper. For the synthesis of the $Na_2Ti_6O_{13}$ particles, two different raw materials of tubular shaped Na-titanate (Na-TiNT) and spherical shaped $TiO_2$ were utilized. Synthesizing with the raw material of Na-TiNT, around 70nm thick 1D-$Na_2Ti_6O_{13}$ with the bandgap energy of 3.5 eV was obtained at $810^{\circ}C$. Below $810^{\circ}C$ or without the presence of NaCl, 1D-$Na_2Ti_6O_{13}$ was in a relatively short in length and agglomerated state. With the processing temperature increased, the thickness of the 1D-$Na_2Ti_6O_{13}$ was also observed to be increased. On the other hand, when $TiO_2$ was employed as a raw material, the mixed amount of $Na_2CO_3$ played an important role in transforming the morphology and phase of the raw material, affecting the bandgap energy of the synthesized product. Specific surface area of the synthesized 1D-$Na_2Ti_6O_{13}$ was significantly affected by the raw and mixed materials as well as processing temperature. When Na-TiNT was processed at $810^{\circ}C$ with NaCl, the specific surface area of the 1D-$Na_2Ti_6O_{13}$ showed the best value of 30.63 $m^2/g$.

Preparation of PZT Powders by Hydrothermal Synthesis : Effects of Starting Materials and the Agitation of Substrate on Powder Characteristics (수열합성법에 의한 PZT 분말제조 : 출발물질과 기질의 교반이 분말특성에 미치는 영향)

  • Jung, S.T.;Lee, K.J.;Seo, K.W.
    • Applied Chemistry for Engineering
    • /
    • v.8 no.2
    • /
    • pp.292-300
    • /
    • 1997
  • In this study PZT powders were prepared with shapes of cubic by hydrothermal synthesis with various starting materials, and the sintering characteristics of the powders were investigated. The particle shapes were cubic regardless of starting materials, but the mean size of particles formed using $Pb(NO_3)_2$, $Ti(OC_4H_9)_4$ and $Zr(OC_4H_9)_4$ was relatively smaller than that of particles prepared from other starting materials. Agitation of the feedstock during hydrothermal reaction results in decreasing the required reaction temperature for the formation of nuclei, and in increasing the size of product particles. XRD results showed that the major phase of PZT crystal powders was a tetragonal phase at the Zr to Ti ratio of 40 to 60, or a rhombohedral phase at its ratio of 60 to 40. The density of a sintered body made from the hydrothermal powders in PbO surrounding varied with sintering temperatures and with periods of sintering time. The experimental results also showed that the optimum sintering condition was at $1150^{\circ}C$ for a 2hr sintering, and that the density of a sintered body was $7.6g/cm^3$.

  • PDF