• 제목/요약/키워드: Titanate

검색결과 571건 처리시간 0.027초

Alumimium Titanate-Mullite 복합체: Part1, 열적 내구성 (Alumimium Titanate-Mullite Composites : Part1,Thermal Durability)

  • 김익진;강원호;고영신
    • 한국재료학회지
    • /
    • 제3권6호
    • /
    • pp.624-631
    • /
    • 1993
  • Alumimium Titanate-Mullite 복합체는 $Al_{2}O_{3}$분말 알콜용액에서 $Si(OC_{2}H_{5})_{4}$$Ti(OC_{2}H_{5})_4$ 의 단계적인 가수분해로 합성하였다. Sol-Gel 방법으로 합성된 모든 분말은 비정질과 단분산이고 좁은 분말크기의 분포를 보였다. 소결체($1600 ^{\circ}C$/2h)는 임계분해온도인 $1100^{\circ}C$에서 100시간 동안과 750와 $1400^{\circ}C$ 100시간동안 반복적인 열적 내구성 및 열충격 시험을 수행하였다. 가장 좋은 열적 내구성은 aluminium titanate함유량이 70rhk 80vol%일때 얻어졌으며, 이들은 위 실험을 한후 아주 적은 미세구조와 열팽창 곡선의 변화를 나타내었다. 소결체 미세구조의 붕괴는 주사현미경, X-선회절분석과 Dil-atometer로 연구하였다. 위 연구는 이와같은 과정에 의하여 합성된 aluminium titanate-mullite복합체의 서비스 수명을 예상하기 위하여 시도되었다.

  • PDF

$TiO_2$ Nanotubes Preparation and Its Formation Mechanism

  • Kang, Young-Gu;Shin, Ki-Seok;Ahn, Sung-Hwan;Hahm, Hyun-Sik
    • 한국응용과학기술학회지
    • /
    • 제27권4호
    • /
    • pp.487-493
    • /
    • 2010
  • There has been a controversy on the formation mechanism of $TiO_2$ nanotubes. This study was conducted to elucidate the formation mechanism of $TiO_2$ nanotubes. $TiO_2$ nanotubes were prepared by a hydrothermal method. $TiO_2$ nanotubes formation mechanism was investigated by controlling the formation time. It was found that $TiO_2$ nanotubes were formed by growing, not by wrapping of sheets. The phase structure of hydrogen titanate nanotubes was different from that of $TiO_2$ nanotubes. It is important to wash the sodium titanate nanotubes with an acidic solution to get hydrogen titanate nanotubes and then to calcine the hydrogen titanate nanotubes around $400^{\circ}C$ to obtain $TiO_2$ nanotubes.

Barium Titanate를 고상반응으로 합성할 때 팽창에 영향을 주는 분위기조성에 관한 연구 (A Study on Atomosphere Sintering to affect the Abnormal Expansion in Solid-Solid Reaction of $BaTiO_3$)

  • 이은상;임대영
    • 한국세라믹학회지
    • /
    • 제23권4호
    • /
    • pp.41-46
    • /
    • 1986
  • When barium titanate was synthesized in solid-solid reaction the abnormal expansion occurred from 90$0^{\circ}C$ to 110$0^{\circ}C$. The equi molecular mixture of $BaCo_3$ and $TiO_2$ was sintered from 90$0^{\circ}C$ to 130$0^{\circ}C$ on the condition of air vacuum and $CO_2$ atomosphere. After that the specimens were tested closely with XDR Dilatometer and SEM The result indicated that: 1, Volume expansion to be synthesized barium titanate in solid-solid reaction was affected by atomosphere sintering. 2. The solid reaction ot fiorm barium titanate in vacuum atomosphere occurred faster than that in air atomosphere. In vacuum atomosphere the maxium volume expansion was about 30% at 90$0^{\circ}C$ for 2hrs, 3. The solid reaction to form barium titanate in 4CO_2$ atomosphere occurred slower than that in air atomosphere. In $CO_2$ atomosphere the maximum volume expansion was 13% at 100$0^{\circ}C$ for 2 hrs. 4. According to the result of x-ray the expanison was caused by the reaction to form $BaTiO_3$ and change $Ba_2TiO_4$ into 4BaTiO_3$.

  • PDF

Preparation and Catalytic Application of Pd Loaded Titanate Nanotube: Highly Selective α Alkylation of Ketones with Alcohols

  • Jang, Jum-Suk;Kwon, Min-Serk;Kim, Hyun-Gyu;Park, Jae-Wook;Lee, Jae-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1617-1621
    • /
    • 2012
  • The titanate nanotube (TNT) was hydrothermally synthesized in 10 M NaOH aqueous solution at $150^{\circ}C$ for 72 h. Titanate nanotube with high surface area (292 $m^2$/g) is a good candidate as a support for catalytic reaction or organic synthesis. Palladium nanoparticles with an average size of $ca$. 3 nm were well dispersed onto the surface of TNT nanotubes. Palladium loaded catalyst with high surface area shows a highly efficient ${\alpha}$ alkylation of ketones with primary alcohols.

$BaTiO_3$ 세라믹의 절연파괴거동에 미치는 기공의 크기와 기공율의 영향 (Effect of pore size and porosity on electrical breakdown behaviors of $BaTiO_3$ ceramics)

  • 조경호;우동찬;남효덕;이희영
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권3호
    • /
    • pp.255-261
    • /
    • 1997
  • In this study, pore-containing barium titanate ceramics were prepared with different porosities and pore sizes, in order to better understand how porosity and pore size affect electrical breakdown of barium titanate ceramics. A granulated barium titanate powder was mixed with three grades of commercial polymer microspheres up to 11wt%. The electrical breakdown test was performed at two different temperatures of 30.deg. C(below Tc) and 150.deg. C(above Tc) for samples immersed in a silicon oil bath using a 60kV de power supply. Electrical breakdown strength of pore containing barium titanate ceramics with porosity lower than 10% decreased as pore size and porosity increased. However, above the 10% porosity region, electrical breakdown strength decreased as the pore connectivity increased. From the experimental results, an optimum electrical breakdown model is proposed in an attempt to explain the effect of pores.

  • PDF

Barium Titanate 및 Strontium Titanate 單結晶中의 不純物의 分光化學分析 (Spectrochemical Determination of Impurities in Barium Titanate and Strontium Titanate Single Crystals)

  • 황재영
    • 대한화학회지
    • /
    • 제7권4호
    • /
    • pp.254-256
    • /
    • 1963
  • $KF-BaTiO_3$系와 $TiO_2-BaTiO_3$系에서 각각 成長시킨 $BaTiO_3$의 單結晶中의 중요 不純物을 分光化學分析法으로 定量하여 比較 檢討하였다. 이 分析法은 $SrTiO_3$의 單結晶의 分光化學分析에도 適用된다.

  • PDF

슬러리 분무열분해에 의한 초미립 티탄산 바륨 분말 제조 (Preparation of Ultrafine Barium Titanate Powder by Slurry Spray Pyrolysis)

  • 이종호;허강헌;이정수
    • 한국세라믹학회지
    • /
    • 제46권2호
    • /
    • pp.137-145
    • /
    • 2009
  • A remarkable improvement of the productivity in barium titanate by slurry spray pyrolysis process was realized by supplying solid source slurry into the rector. The produced barium titanate powders showed uniform powder properties, and reproducibility with higher tetragonality in the range of 80$\sim$200 nm, case by case. The secondary calcination experiments of the as-prepared powders by spray pyrolysis revealed that the powders as-prepared over 700$^{\circ}C$ showed perfectly different behavior with the lower temperature's ones and the solid state reaction’s case. The result was discussed in terms of the reaction mechanism based on the activation energy analysis.

Synthesis of Monodispersed Barium Titanate Nanopowders by Alkoxide-Hydroxide Sol-Precipitation Method

  • Yoon, Song-Hak;Kim, Min-Gyu;Shin, Nam-Soo;Kim, In-Sung;Baik, Sung-Gi
    • 한국세라믹학회지
    • /
    • 제43권11호
    • /
    • pp.710-714
    • /
    • 2006
  • Barium titanate nanoparticles were synthesized under N$_2$ atmosphere by the hydrolysis and condensation of barium hydroxide octahydrate and titanium (IV) isopropoxide. The synthesized particles were aggregates of nanosized primary particles. The primary particles of about 20-50 nm in diameter became building blocks of larger secondary particles, which are in most cases spherical in shape. The size and morphological evolution of secondary particles are strongly related to the precursor concentration. The observations suggest that formation and control of secondary particles is an essential step in the alkoxidehydroxide sol-precipitation process to obtain monodispersed barium titanate nanopowders.