DOI QR코드

DOI QR Code

Preparation and Catalytic Application of Pd Loaded Titanate Nanotube: Highly Selective α Alkylation of Ketones with Alcohols

  • Jang, Jum-Suk (Department of Chemical Engineering and School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Kwon, Min-Serk (Department of Chemistry, Pohang University of Science and Technology (POSTECH)) ;
  • Kim, Hyun-Gyu (Busan Center, Korea Basic Science Institute (KBSI)) ;
  • Park, Jae-Wook (Department of Chemistry, Pohang University of Science and Technology (POSTECH)) ;
  • Lee, Jae-Sung (Department of Chemical Engineering and School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH))
  • Received : 2012.01.19
  • Accepted : 2012.01.19
  • Published : 2012.05.20

Abstract

The titanate nanotube (TNT) was hydrothermally synthesized in 10 M NaOH aqueous solution at $150^{\circ}C$ for 72 h. Titanate nanotube with high surface area (292 $m^2$/g) is a good candidate as a support for catalytic reaction or organic synthesis. Palladium nanoparticles with an average size of $ca$. 3 nm were well dispersed onto the surface of TNT nanotubes. Palladium loaded catalyst with high surface area shows a highly efficient ${\alpha}$ alkylation of ketones with primary alcohols.

Keywords

References

  1. Kasuga T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Lnagmuir 1998, 14, 3160. https://doi.org/10.1021/la9713816
  2. Bavykin, D. V.; Lapkin, A. A.; Plucinski, P. K.; Friedrich, J. M.; Walsh, F. C. J. Catal. 2005, 235, 10. https://doi.org/10.1016/j.jcat.2005.07.012
  3. Zhu, B.; Li, K.; Feng, Y.; Zhang, S.; Wu, S.; Huang, W. Catal. Lett. 2007, 118, 55. https://doi.org/10.1007/s10562-007-9139-0
  4. Kleinhammes, A.; Wagner, G. W.; Kulkarni, H.; Jia, Y.; Zhang, Q.; Qin, L. C.; Wu, Y. Chem. Phys. Lett. 2005, 411, 81. https://doi.org/10.1016/j.cplett.2005.05.100
  5. Wang, Y. G.; Zhang, X. G. Electrochim. Acta 2004, 49, 1957. https://doi.org/10.1016/j.electacta.2003.12.023
  6. Wang, M.; Guo, D. J.; Li, H. L. J. Solid State Chem. 2005, 178, 1996. https://doi.org/10.1016/j.jssc.2005.04.006
  7. Cao, J.; Sun, J. Z.; Li, H. Y.; Hong, J.; Wang, M. J. Mater. Chem. 2004, 14, 1203. https://doi.org/10.1039/b313541a
  8. Kuo, H. L.; Kuo, C. Y.; Liu, C. H.; Chao, J. H.; Lin, C. H. Catal. Lett. 2007, 113, 7. https://doi.org/10.1007/s10562-006-9009-1
  9. Hodos, M.; Horvath, E.; Haspel, H.; Kukovecz, A.; Konya, Z.; Kiricsi, I. Chem. Phys. 2004, 399, 512.
  10. Lee, C. K.; Wang, C. C.; Lyu, M. D.; Juang, L. C.; Liu, S. S.; Hung, S. H. J. Colloid & Interface Sci. 2007, 316, 562. https://doi.org/10.1016/j.jcis.2007.08.008
  11. Xu, J. C.; Lu, M.; Guo, X. Y.; Lia, H. L. J. Mol. Catal. A 2005, 226, 123. https://doi.org/10.1016/j.molcata.2004.09.051
  12. Kim, J. C.; Choi, J.; Lee, Y. B.; Hong, J. H.; Lee, J. I.; Yang, J. W.; Lee, W. I.; Hur, N. H. Chem. Commun. 2006, 5024.
  13. Varghese, O. K.; Gong, D.; Paulose, M.; Ong, K. O.; Dickey, E. C.; Grimes, C. A. Adv. Mater. 2003, 15, 624. https://doi.org/10.1002/adma.200304586
  14. Bavykin, D. V.; Lapkin, A. A.; Plucinski, P. K.; Friedrich, J. M.; Walsh, F. C. J. Phys. Chem. B 2005, 109, 19422. https://doi.org/10.1021/jp0536394
  15. Lim, S. H.; Luo, J.; Zhong, Z.; Ji, W.; Lin, J. Inorg. Chem. 2005, 44, 4124. https://doi.org/10.1021/ic0501723
  16. Kavan, L.; Kalbac, M.; Zukalova, M.; Exnar, I.; Lorenzen, V.; Nesper, R.; Gratzel, M. Chem. Mater. 2004, 16, 477. https://doi.org/10.1021/cm035046g
  17. Armstrong, A. R.; Armstrong, G.; Canales, J.; Bruce, P. G. Adv. Mater. 2005, 17, 862. https://doi.org/10.1002/adma.200400795
  18. Gao, X.; Zhu, H.; Pan, G.; Ye, S.; Lan, Y.; Wu, F.; Song, D. J. Phys. Chem. B 2004, 108, 2868. https://doi.org/10.1021/jp036821i
  19. Uchida, S.; Chiba, R.; Tomiha, M.; Masaki, N.; Shirai, M. Electrochemistry 2002, 70, 418.
  20. Ohsaki, Y.; Masaki, N.; Kitamura, T.; Wada, Y.; Okamoto, T.; Sekino, T.; Niiharab, K.; Yanagida, S. Phys. Chem. Chem. Phys. 2005, 7, 4157. https://doi.org/10.1039/b511016e
  21. Bavykin, D. V.; Lapkin, A. A.; Plucinski, P. K.; Friedrich, J. M.; Walsh, F. C. J. Catal. 2005, 235, 10. https://doi.org/10.1016/j.jcat.2005.07.012
  22. Murciano, L. T.; Lapkin, A. A.; Bavykin, D. V.; Walsh, F. C.; Wilson, K. J. Catal. 2007, 245, 272. https://doi.org/10.1016/j.jcat.2006.10.015
  23. Idakiev, V.; Yuan, Z. Y.; Tabakova, T.; Su, B. L. Appl. Catal. A: Gen. 2005, 281, 149. https://doi.org/10.1016/j.apcata.2004.11.021
  24. Sikhwivhilu, L. M.; Coville, N. J.; Naresh, D.; Chary, K. V. R.; Vishwanathan, V. Appl. Catal. A: Gen. 2007, 324, 52. https://doi.org/10.1016/j.apcata.2007.03.004
  25. Bavykin, D. V.; Lapkin, A. A.; Plucinski, P. K.; Murcianob, L. T.; Friedrich, J. M.; Walsh, F. C. Topics in Catal. 2006, 39, 151. https://doi.org/10.1007/s11244-006-0051-4
  26. Jang, J. S.; Kim, H. G.; Bae, S. W.; Jung, J. H.; Shon, B. H.; Lee, J. S. J. Solid State Chem. 2006, 179, 1067. https://doi.org/10.1016/j.jssc.2006.01.004
  27. Kim, N.; Kwon, M. S.; Park, C. M.; Park, J. Tetrahedron Lett. 2004, 45, 7057. https://doi.org/10.1016/j.tetlet.2004.07.126
  28. Kwon, M. S.; Kim, N.; Park, C. M.; Lee, J. S.; Kang, K. Y.; Park, J. Org. Lett. 2005, 7, 1077. https://doi.org/10.1021/ol047381w
  29. Kwon, M. S.; Kim, N.; Seo, S. H.; Park, I. S.; Cheedrala, R. K.; Park, J. Angew. Chem., Int. Ed. 2005, 44, 6913. https://doi.org/10.1002/anie.200502422
  30. Park, C. M.; Kwon, M. S.; Park, J. Synthesis 2006, 22, 3790.
  31. Kim, M.-J.; Kim, W.-H.; Han, K.; Choi, Y. K.; Park, J. Org. Lett. 2007, 9, 1157. https://doi.org/10.1021/ol070130d
  32. Kwon, M. S.; Park, I. S.; Jang, J. S.; Lee, J. S.; Park, J. Org. Lett. 2007, 9, 3417. https://doi.org/10.1021/ol701456w
  33. Kruk, M.; Jaroniec, M.; Sayari, A. Langmuir 1997, 13, 6267. https://doi.org/10.1021/la970776m
  34. Barett, E. P.; Joyner, L. G.; Halender, P. P. J. Am. Chem. Soc. 1951, 73, 373. https://doi.org/10.1021/ja01145a126
  35. Sing, K. S. W.; Evertt, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603. https://doi.org/10.1351/pac198557040603
  36. Blackburn, T. F.; Schwartz, J. J. Chem. Soc., Chem. Commun. 1977, 157.
  37. Gomez-Bengoa, E.; Noheda, P.; Echavarren, A. M. Tetrahedron Lett. 1994, 35, 7097. https://doi.org/10.1016/0040-4039(94)88235-5
  38. Aiet-Mohand, S.; Henin, F.; Muzart, J. Tetrahedron Lett. 1995, 36, 2473. https://doi.org/10.1016/0040-4039(95)00286-3
  39. Kaneda, K.; Fujii, M.; Morioka, K. J. Org. Chem. 1996, 61, 4502. https://doi.org/10.1021/jo9605307
  40. Kaneda, K.; Fujie, Y.; Ebitani, K. Tetrahedron Lett. 1997, 38, 9023. https://doi.org/10.1016/S0040-4039(97)10411-7
  41. Peterson, K. P.; Larock, R. C. J. Org. Chem. 1998, 63, 3185. https://doi.org/10.1021/jo971268k
  42. Nishimura, T.; Onoue, T.; Ohe, K.; Uemura, S. Tetrahedron Lett. 1998, 39, 6011. https://doi.org/10.1016/S0040-4039(98)01235-0
  43. Nishimura, T.; Onoue, T.; Ohe, K.; Uemura, S. J. Org. Chem. 1999, 64, 6750. https://doi.org/10.1021/jo9906734
  44. ten Brink, G.-J.; Arends, I. W. C. E.; Sheldon, R. A. Science 2000, 287, 1636. https://doi.org/10.1126/science.287.5458.1636
  45. Stahl, S. S.; Thorman, J. L.; Nelson, R. C.; Kozee, M. A. J. Am. Chem. Soc. 2001, 123, 7188. https://doi.org/10.1021/ja015683c
  46. Steinhoff, M. A.; Fix, S. R.; Stahl, S. S. J. Am. Chem. Soc. 2002, 124, 766. https://doi.org/10.1021/ja016806w
  47. ten Brink, G.-J.; Arends, I. W. C. E.; Sheldon, R. A. Adv. Synth. Catal. 2002, 344, 355. https://doi.org/10.1002/1615-4169(200206)344:3/4<355::AID-ADSC355>3.0.CO;2-S
  48. Steinhoff, B. A.; Stahl, S. S. Org. Lett. 2002, 4, 4179. https://doi.org/10.1021/ol026988e
  49. Schultz, M. J.; Park, C. C.; Sigman, M. S. Chem. Commun. 2002, 3034.
  50. Jensen, D. R.; Schultz, M. J.; Mueller, J. A.; Sigman, M. S. Angew. Chem., Int. Ed. 2003, 42, 3810. https://doi.org/10.1002/anie.200351997
  51. Kwon, M. S.; Kim, N.; Park, C. M.; Lee, J. S.; Kang, K. Y.; Park, J. Org. Lett. 2005, 7, 1077. https://doi.org/10.1021/ol047381w
  52. Uozumi, Y.; Nakao, R. Angew. Chem., Int. Ed. 2003, 42, 194. https://doi.org/10.1002/anie.200390076
  53. Pillai, U. R.; Sahle-Demessie, E. Green Chem. 2004, 6, 161. https://doi.org/10.1039/b316414b
  54. Cho, C. S.; Kim, B. T.; Lee, M. J.; Kim, T.-J.; Shim, S. C. Angew. Chem., Int. Ed. 2001, 40, 958. https://doi.org/10.1002/1521-3773(20010302)40:5<958::AID-ANIE958>3.0.CO;2-4
  55. Cho., C. S.; Kim, B. T.; Kim, T.-J.; Shim, S. C. J. Org. Chem. 2001, 66, 9020. https://doi.org/10.1021/jo0108459
  56. Cho, C. S.; Kim, B. T.; Kim, T.-J.; Shim, S. C. Tetrahedron Lett. 2002, 43, 7987. https://doi.org/10.1016/S0040-4039(02)01625-8
  57. Cho, C. S.; Kim, B. T.; Kim, H.-S.; Kim, T.-J.; Shim, S. C. Organometallics 2003, 22, 3609.
  58. Taguchi, K.; Nakagawa, H.; Hirabayashi, T. Sakaguchi, S.; Ishii, Y. J. Am. Chem. Soc. 2004, 126, 72. https://doi.org/10.1021/ja037552c
  59. Martínez, R.; Brand, G.-J.; Ramón, D.-J.; Yus, M. Tetrahedron Lett. 2005, 46, 3683. https://doi.org/10.1016/j.tetlet.2005.03.158
  60. Motokura, K.; Nishimura, D.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Am. Chem. Soc. 2004, 126, 5662. https://doi.org/10.1021/ja049181l
  61. Motokura, K.; Fujita, N.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Tetrahedron Lett. 2005, 46, 5507. https://doi.org/10.1016/j.tetlet.2005.06.053
  62. Motokura, K.; Fujita, N.; Mori, K.; Mizugaki, T.; Ebitani, K.; Jitsukawa, K.; Kaneda, K. Chem. Eur. J. 2006, 12, 8228. https://doi.org/10.1002/chem.200600317

Cited by

  1. The cascade synthesis of α,β-unsaturated ketones via oxidative C–C coupling of ketones and primary alcohols over a ceria catalyst vol.6, pp.6, 2016, https://doi.org/10.1039/C5CY01607J
  2. Solvent-free direct α-alkylation of ketones by alcohols catalyzed by nickel supported on silica–alumina vol.20, pp.18, 2018, https://doi.org/10.1039/C8GC01958D