• Title/Summary/Keyword: Titan-VIII

Search Result 8, Processing Time 0.022 seconds

Optimizing Path Finding based on Dijkstra's Algorithm for a Quadruped Walking Robot TITAN-VIII (4족보행 로봇 TITAN-VIII의 Dijkstra's Algorithm을 이용한 최적경로 탐색)

  • Nguyen, Van Tien;Ahn, Byong-Won;Bae, Cherl-O
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.574-584
    • /
    • 2017
  • In this paper, the optimizing path finding control method is studied for a Legged-robot. It's named TITAN-VIII. It has a lot of advantages over the wheeled robot in the ability to walk freely on an irregular ground. However, the moving speed on the ground of the Legged-robot is slower than the Wheeled-robot's. Consequently, the purpose of the method is presented in this paper to minimize its time when it walks to a goal. It find the path, our approach is based on an algorithm which is called Dijkstra's algorithm. In the rest of paper, the various posture of the robot is discussed to keep the robot always in the statically stable. Based on above works, the math formulas are presented to determine the joint angles of the robot. After that an algorithm is designed to find and keep robot on the desired trajectory. Experimental results of the proposed method are demonstrated in the last of paper.

A Study on Energy Efficiency of Quadruped Walking Robot (4족 보행 로봇의 에너지효율에 관한 연구)

  • 안병원;배철오;박영산;박중순;이성근
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.309-312
    • /
    • 2003
  • Though a legged robot has high terrain adaptability as compared with a wheeled vehicle, its moving speed is considerably low in general. For attaining a high moving speed with a legged robot, a dynamically stable walking, such as running for a biped robot and a trot gait or a bound gait for a quadruped robot, is a promising solution. However, energy efficiency of a dynamically stable walking is generally lower than the efficiency of a stable gait such as a crawl gait. In this paper, we present an experimental study on the energy efficiency of a quadruped walking vehicle. Energy consumption of two walking patterns for a trot gait is investigated though experiments using a TITAN-VIII.

  • PDF

A Computer Simulation on the Efficiency of Energy Consumption for Quadruped Walking Robot (4족 보행로봇의 소비에너지 효율에 관한 시뮬레이션)

  • Ahn Byong-Won;Bae Cherl-o;Eom Han-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.6
    • /
    • pp.1247-1252
    • /
    • 2005
  • Though a legged robot has a high terrain adaptability as compared with a wheeled robot, its moving speed is considerably low in general. For attaining a high moving speed with a logged robot, a dynamically stable walking is a promising solution. However, the energy efficiency of a dynamically stable walking is generally lower than the efficiency of a stable gait such as a crawl gait. In this paper, energy consumption of two walking patterns for a trot gait is simulated through modeling a quadruped walking robot named TITAN-VIII.

A Study on Attitude angle control of Quadruped Walking Robot (4족 보행로봇의 자세각 제어에 관한 연구)

  • Eom Han-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.8
    • /
    • pp.1722-1729
    • /
    • 2005
  • In this paper, we used the quadruped walking robot Titan-VIII in order to carry out this simulation of sway compensation trajectory. The attitude angle ${\phi}_r$ and ${\phi}_p$ is obtained from 3-D motion sensor that is attached at the center of robot body and the attitude control carried out at every 10[ms] for stable gait of robot. Duty factor, that is fixed at 0.5. When we change period T into 1.5, 2.0, 3.0[sec] each and moving distance per period is changed into 0.2, 0.3(m), we sim띠ate several walking experiment of robot. and then we analyze the experiment results if there are any difference between the imaginary ZMP and actual ZMP of robot and the stable gait of robot is realized.

Consumption Energy Analysis of Quadruped Walking Robot (4족 로봇의 에너지 소모량 분석)

  • Eom Han-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.134-139
    • /
    • 2006
  • A energy efficiency of quadruped walking robot has been studied mathematical modeling, dynamic analysis or simulation by consumption energy per period. In this paper, We used the quadruped walking robot Titan-VIII in order to carry out this experiment. The total moving length is about 2[m] , the stride length is 0.1, 0.2. 0.3, and walking period is changed by 1.0, 1.5, 2.0, 2.5 3.0[sec] Per each stride length. So consumption energy of 15 cases are measured. As a result of this experiment we obtained the best energy efficiency when stride length was 0.3[m], and Period was 1.5[sec].

Estimation of Attitude Control for Quadruped Walking Robot Using Load Cell (로드셀을 이용한 4족 보행로봇의 자세제어 평가)

  • Eom, Han-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1235-1241
    • /
    • 2012
  • In this paper, each driving motor for leg joints on a robot is controlled by estimating the direction of the legs measuring each joint angle and attitude angle of robot. We used quadruped working robot named TITAN-VIII in order to carry out this experimental study. 4 load cells are installed under the bottom of 4 legs to measure the pressed force on each leg while it's walking. The walking experiments of the robot were performed in 8 different conditions combined with duty factor, the length of a stride, the trajectory height of the foot and walking period of robot. The validity of attitude control for quadruped walking robot is evaluated by comparing the pressed force on a leg and the power consumption of joint driving motor. As a result, it was confirmed that the slip-condition of which the foot leave the ground late at the beginning of new period of the robot during walking process, which means the attitude control of the robot during walking process wasn't perfect only by measuring joint and attitude angle for estimating the direction of the foot.

A Study of Energy frugality style walk of Quadruped Walking Robot (4족 로봇의 에너지 절약형 보행에 관한 연구)

  • Eom, Han-Sung;Ahn, Byong-Won;Bae, Cherl-O;Kim, Hyun-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.204-207
    • /
    • 2005
  • Until present, most studies about energy efficiency of quadruped walking robot are mathematical modelings, dynamic analysis or simulation consumption energy per period by basic efficiency evaluate in this paper, a quadruped walking robot Titan-VIII is used for walking experience. The total moving length is about 2[m]. The stride length is 0.1, 0.2, 0.3, walking period is changed by 1.0, 1.5, 2.0, 3.0[sec] per each stride length. So consumption energy of 12 cases are measured. The energy efficiency of quadruped walking robot was analyzed by data that is saved by an experiment.

  • PDF

A Study on Trot Walking for Quadruped Walking Robot (4족 보행로봇의 Trot 보행에 관한 연구)

  • Bae Cherl-O;Ahn Byeong-Won;Kim Hyun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1418-1423
    • /
    • 2004
  • A legged robot is friendly to human because it is resemble to human. And the robot can obtain support points freely because it has high degree of freedom for several joint as compared with a wheeled robot. Also the robot can create the relative position at desired position between support position and robot. The joint of robot cu used as manipulator. On the contrary the mechanism of robot is complicated to have many joint and moving speed is lower than wheeled robot. Also the legged robot is needed a special control not to fall on the ground because the robot is easy to vibrate when it is moving. The 4 leg structure is the minimum leg numbers not to fall and to realize safety gait continuously. A trot gait is investigated through experiments using a quadruped walking robot named TITAN-VIII.