• 제목/요약/키워드: Tissue-specific agents

검색결과 51건 처리시간 0.022초

Biopsy and Mutation Detection Strategies in Non-Small Cell Lung Cancer

  • Jung, Chi Young
    • Tuberculosis and Respiratory Diseases
    • /
    • 제75권5호
    • /
    • pp.181-187
    • /
    • 2013
  • The emergence of new therapeutic agents for non-small cell lung cancer (NSCLC) implies that histologic subtyping and molecular predictive testing are now essential for therapeutic decisions. Histologic subtype predicts the efficacy and toxicity of some treatment agents, as do genetic alterations, which can be important predictive factors in treatment selection. Molecular markers, such as epidermal growth factor receptor (EGFR) mutation and anaplastic lymphoma kinase (ALK) rearrangement, are the best predictors of response to specific tyrosine kinase inhibitor treatment agents. As the majority of patients with NSCLC present with unresectable disease, it is therefore crucial to optimize the use of tissue samples for diagnostic and predictive examinations, particularly for small biopsy and cytology specimens. Therefore, each institution needs to develop a diagnostic approach requiring close communication between the pulmonologist, radiologist, pathologist, and oncologist in order to preserve sufficient biopsy materials for molecular analysis as well as to ensure rapid diagnosis. Currently, personalized medicine in NSCLC is based on the histologic subtype and molecular status. This review summarizes strategies for tissue acquisition, histologic subtyping and molecular analysis for predictive testing in NSCLC.

Molecular Imaging of Stretch-Induced Tissue Factor Expression in Carotid Arteries with Intravascular Ultrasound

  • Park Byung-Rae
    • 대한의생명과학회지
    • /
    • 제11권1호
    • /
    • pp.23-29
    • /
    • 2005
  • Molecular imaging with targeted contrast agents enables tissues to be distinguished by detecting specific cell-surface receptors. In the present study, a ligand-targeted acoustic nanoparticle system is used to identify angioplasty-induced expression of tissue factor by smooth muscle cell within carotid arteries. Pig carotid arteries were overstretched with balloon catheters, treated with tissue factor-targeted or a control nanoparticle system, and imaged with intravascular ultrasound before and after treatment. Tissue factor-targeted emulsion bound and increased the echogenicity and gray-scale levels of overstretched smooth muscle cell within the tunica media, versus no change in contralateral control arteries. Expression of stretch-induced tissue factor in carotid artery media was confirmed by immunohistochemistry. The potential for abnormal thrombogenicity of balloon-injured arteries, as reflected by smooth muscle expression of tissue factor, was imaged using a novel, targeted, nanoparticulate ultrasonic contrast agent.

  • PDF

Chemometric Studies on Brain-uptake of PET Agents via VolSurf Analysis

  • Lee, Hyo-Seon;Kim, Mi-Kyoung;Lee, Chae-Woon;Kim, Jin-Young;Choo, Il-Han;Woo, Jong-Inn;Chong, You-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권1호
    • /
    • pp.61-68
    • /
    • 2008
  • High initial (2 minutes after iv injection) brain-uptake of PET agents is required to deliver the agent to binding sites in brain tissue but, for quantification of the specific binding, relatively rapid washout of free and non-specifically bound PET agents from the brain (30 minutes after injection) also is required. In order to compare the physicochemical properties of the PET agents which are responsible for early brain-uptake and rapid washout, respectively, chemometric analysis on brain-uptake of PET agents was performed via a classical VolSurf approach. According to the PCA and PLS results, high 2-30 min brain-uptake ratio seems to be related to the large hydrophobic regions in the PET agents which are not confined to a particular surface.

Effects of Fenofibrate on Adipogenesis in Female C57BL/6J Mice

  • Jeong Sunhyo;Choi Won Chang;Yoon Michung
    • 대한의생명과학회지
    • /
    • 제11권1호
    • /
    • pp.1-8
    • /
    • 2005
  • Fibrates are a class of hypolipidemic agents whose effects are mediated by activation of a specific transcription factor called the peroxisome proliferator-activated receptor $\alpha\;(PPAR\alpha).\;PPAR\alpha$ regulates the pathways of lipid catabolism such as fatty acid oxidation and the triglyceride metabolism, resulting in the treatment of hyperlipidemia. The decreased levels of plasma triglycerides by fibrates are responsible for hypertrophy and hyperpalsia of adipose cells. To determine whether fenofibrate regulates adipogenesis in female C57BL/6J mice, we measured the effects of fenofibrate on not only body weight, adipose tissue mass and serum triglycerides, but also the histology of adipose tissue and the expression of adipocyte marker genes. Fenofibrate did not inhibit high fat diet-induced increases in body weight, adipose tissue mass and serum triglycerides. Furthermore, fenofibrate did not cause the changes in the size and number of adipocytes and the expression of adipocyte-specific genes such as leptin and $TNF\alpha$. Therefore, this study demonstrates that fenofibrate does not affect adipogenesis in female mice.

  • PDF

조직 특성 MR 조영제를 이용한 쥐의 간세포막의 물분자 교환 및 투과율의 MR 측정기법 (MR Study of Wate Exchange and Cell Membrane Permeability in Rat Liver Cells Using a Tissue-Specific MR Contrast Agent)

  • Yongmin Chang
    • Investigative Magnetic Resonance Imaging
    • /
    • 제2권1호
    • /
    • pp.73-82
    • /
    • 1998
  • 목적 : 간특정 MR 조영제를 이요하여 간세포의 세포막을 통한 물분자의 교환 및 세포막 투과율을 정확히 측정 할 수 있는 MR 기법을 개발하고자 하였다. 대상 및 방법 : 쥐의 간세포를 분리하여 낸 후 NMR 측정을 시도하엿다. 모든 실험은 0.02MHz부터 60 MHz까지 양성자의 Larmor 주파수를 변화시킬 수 있는 IBM형 field cycling relaxometer를 사용하여 시행하였으며 spin-echo 펄스열을 사용하여 T1 자기이완시간을 측정하였다. 전오도의 간특정 조영제인 Gd-EOB-DTPA를 함유하고 있는 간세포 샘플로부터 획득한 T1 데이터를 연속분포 분석법을 사용하여 분석하였으며 이때 이론적 모델로는 Two compartmental exchange 모델을 이용하였다. 결과 : 간세포내의 물분자의 평균 거주시간은 약 250 msec이며 간세포막의 투과율에 대한 최저치는 $(1.3{\pm}0.1){\;}{\times}{\;}10^{-3}cm/sec$ 이었다. 자기이완시간의 연속적인 분포도를 구할 수 있는 CONTIN 분석기법을 적용한 결과 확산적 물분자 교환이 일어남을 밝혔고 이러한 확산적 교환의 정도가 간세포의 경우 세포내 공간에서는 작지 않다는 사실을 규명 할 수 있었다. 결론 : 연속분포 분석기법을 적용하는 경우 Gd-EOB-DTPA는 간세포에서의 물분자의 교환정도 및 세포막의 물분자에 대한 투과율을 측정하는데 매우 유용한 방법임을 확인하였고 간세포에서의 물분자의 교환속도는 적혈구에서의 물분자 교환 속도에 비해 매우 느리다는 사실을 확인하였다. 따라서 조직 특정 조영제는 해당 조직 혹은 세포의 세포막 투과율과 같은 생리학적 정보를 알아낼 수 있는 기능적 조영제로서의 유용성을 입증할 수 있었다.

  • PDF

Gene Expression Patterns of Spleen, Lung and Brain with Different Radiosensitivity in C57BL6 Mice

  • Majumder Md. Zahidur Rahman;Lee, Woo-Jung;Lee, Su-Jae;Bae, Sang-Woo;Lee, Yun-Sil
    • Journal of Radiation Protection and Research
    • /
    • 제30권4호
    • /
    • pp.197-208
    • /
    • 2005
  • Although little information is available on the underlying mechanisms, various genetic factors have been associated with tissue-specific responses to radiation. In the present study, we explored the possibility whether organ specific gene expression is associated with radiosensitivity using samples from brain, lung and spleen. We examined intrinsic expression pattern of 23 genes in the organs by semi-quantitative RT-PCR method using both male and female C57BL/6 mice. Expression of p53 and p21, well known factors for governing sensitivity to radiation or chemotherapeutic agents, was not different among the organ types. Both higher expression of sialyltransferase, delta7-sterol reductase, leptin receptor splice variant form 12.1, and Cu/Zn superoxide dismutase (SOD) and lower expression of alphaB crystalline were specific for spleen tissue. Expression level of glutathione peroxidase and APO-1 cell surface antigen gene in lung tissue was high, while that of Na, K-ATPase alpha-subunit, Cu/ZnSOD, and cyclin G was low. Brain, radioresistant organ, showed higher expressions of Na, K-ATPase-subunit, cyclin G, and nucleolar protein hNop56 and lower expression of delta7-sterol reductase. The result revealed a potential correlation between gene expression patterns and organ sensitivity, and Identified genes which might be responsible for organ sensitivity.

Clinical development of photodynamic agents and therapeutic applications

  • Baskaran, Rengarajan;Lee, Junghan;Yang, Su-Geun
    • 생체재료학회지
    • /
    • 제22권4호
    • /
    • pp.303-310
    • /
    • 2018
  • Background: Photodynamic therapy (PDT) is photo-treatment of malignant or benign diseases using photosensitizing agents, light, and oxygen which generates cytotoxic reactive oxygens and induces tumour regressions. Several photodynamic treatments have been extensively studied and the photosensitizers (PS) are key to their biological efficacy, while laser and oxygen allow to appropriate and flexible delivery for treatment of diseases. Introduction: In presence of oxygen and the specific light triggering, PS is activated from its ground state into an excited singlet state, generates reactive oxygen species (ROS) and induces apoptosis of cancer tissues. Those PS can be divided by its specific efficiency of ROS generation, absorption wavelength and chemical structure. Main body: Up to dates, several PS were approved for clinical applications or under clinical trials. $Photofrin^{(R)}$ is the first clinically approved photosensitizer for the treatment of cancer. The second generation of PS, Porfimer sodium ($Photofrin^{(R)}$), Temoporfin ($Foscan^{(R)}$), Motexafin lutetium, Palladium bacteriopheophorbide, $Purlytin^{(R)}$, Verteporfin ($Visudyne{(R)}$), Talaporfin ($Laserphyrin^{(R)}$) are clinically approved or under-clinical trials. Now, third generation of PS, which can dramatically improve cancer-targeting efficiency by chemical modification, nano-delivery system or antibody conjugation, are extensively studied for clinical development. Conclusion: Here, we discuss up-to-date information on FDA-approved photodynamic agents, the clinical benefits of these agents. However, PDT is still dearth for the treatment of diseases in specifically deep tissue cancer. Next generation PS will be addressed in the future for PDT. We also provide clinical unmet need for the design of new photosensitizers.

Diabetes, Glucose Transport and Hypoglycaemic Agents

  • Khil, Lee-Yong
    • Biomolecules & Therapeutics
    • /
    • 제12권4호
    • /
    • pp.202-208
    • /
    • 2004
  • Diabetes mellitus is a complex metabolic derangement with hyperglycaemia being the most characteristic symptom of diabetes. Hyperglycaemia can be caused by an increase in the rate of glucose production by the liver or by a decrease in the rate of glucose use by peripheral tissues. Impaired glucose transport is one of the major factors contributing to insulin resistance in type 2 diabetic patients. The ability of insulin to mediate tissue glucose uptake is a critical step in maintaining glucose homeostasis and in clearing the post-prandial glucose load. Glucose transport is mediated by specific carriers called glucose transporters (GLUTs). In this article, the functional importance and molecular mechanisms of insulin-induced glucose transport and development of hypoglycaemic agents which increase glucose transport are reviewed.

혈청 IgE의 임상적 의의 (Clinical significance of serum IgE)

  • 정혜리
    • Clinical and Experimental Pediatrics
    • /
    • 제50권5호
    • /
    • pp.416-421
    • /
    • 2007
  • Many previous studies have proved that human allergic disease resulted from the formation of antibodies belonging to a unique immunoglobulin isotype termed immunoglobulin E (IgE). Most of IgE-producing plasma cells are found in the lymphoid tissue associated with the gastrointestinal and respiratory tracts. IgE may be found free in the mucosal secretions of these tissues, bound to local mast cells, or distributed by the systemic circulation to mast cells and basophils throughout the body. Total serum IgE concentrations tend to be higher in allergic adults and children compared with non-allergic individuals, but the value of total serum IgE as a screening test for allergic disease is limited. Total serum IgE levels are related to the probability of an individual having detectable allergen-specific IgE. Allergen-specific IgE concentrations vary with a person's age, the degree and duration of the recent allergen or cross-reactive allergen exposure. The value of quantitative assays for allergen-specific IgE has been suggested in recent studies. Serum IgE increases in many non-allergic diseases, including infectious and parasitic diseases. The IgE changes appear to be specific to the infectious agents, whereas non-specific in other diseases. The increased serum IgE in some of these conditions probably results from alterations in immune function. This review summarizes the clinical significance of total and allergen-specific IgE examinations in allergic diseases.