• 제목/요약/키워드: Tissue specific

검색결과 1,616건 처리시간 0.04초

Isolation of CD4 Genomic Clones and Role of Its 5' Upstream Region in CD4 Expression

  • Youn, Hyun-Joo
    • 미생물학회지
    • /
    • 제30권6호
    • /
    • pp.488-494
    • /
    • 1992
  • Three clones containing mouse CD4 gene were prepared using AKR genomic cosmid library. The role of 6, 500 bp 5' flanking region of the first exon of the AKR CD4 gene in tissue or developmental stage specific expression of CD4 has been studied. The deletion constructs containing various amounts of CD4 5' flanking sequences were prepared, and they were transfected into the cell lines representing different cell types or developmental stages of CD4 expression. Study of the reporter gene expression revealed that at least 1, 700 bp of 5' flanking region did retain promoter activity for CD4 expression. This area did not seem to contain enhancer activity for a full expression of CD4. However, the putative promoter interacted with other tissue specific enhancer sequence and showed the tissue specificity of the enhancer element.

  • PDF

Molecular Imaging of Stretch-Induced Tissue Factor Expression in Carotid Arteries with Intravascular Ultrasound

  • Park Byung-Rae
    • 대한의생명과학회지
    • /
    • 제11권1호
    • /
    • pp.23-29
    • /
    • 2005
  • Molecular imaging with targeted contrast agents enables tissues to be distinguished by detecting specific cell-surface receptors. In the present study, a ligand-targeted acoustic nanoparticle system is used to identify angioplasty-induced expression of tissue factor by smooth muscle cell within carotid arteries. Pig carotid arteries were overstretched with balloon catheters, treated with tissue factor-targeted or a control nanoparticle system, and imaged with intravascular ultrasound before and after treatment. Tissue factor-targeted emulsion bound and increased the echogenicity and gray-scale levels of overstretched smooth muscle cell within the tunica media, versus no change in contralateral control arteries. Expression of stretch-induced tissue factor in carotid artery media was confirmed by immunohistochemistry. The potential for abnormal thrombogenicity of balloon-injured arteries, as reflected by smooth muscle expression of tissue factor, was imaged using a novel, targeted, nanoparticulate ultrasonic contrast agent.

  • PDF

Cell-Interactive Polymers for Tissue Engineering

  • Lee, Kuen Yong;Mooney, David J.
    • Fibers and Polymers
    • /
    • 제2권2호
    • /
    • pp.51-57
    • /
    • 2001
  • Tissue engineering is one exciting approach to treat patients who need a new organ or tissue. A critical element in this approach is the polymer scaffold, as it provides a space for new tissue formation and mimics many roles of natural extra-cellular matrices. In this review, we describe several design parameters of polymer matrices that can significantly affect cellular behavior, as well as various polymers which are frequently used to date or potentially useful in many tissue engineering applications. Interactions between cells and polymer scaffolds, including specific receptor-ligand interactions, physical and degradation feature of the scaffolds, and delivery of soluble factors, should be considered in the design and tailoring of appropriate polymer matrices to be used in tissue engineering applications, as these interactions control the function and structure of engineered tissues.

  • PDF

Recent advances in stem cell therapeutics and tissue engineering strategies

  • Kwon, Seong Gyu;Kwon, Yang Woo;Lee, Tae Wook;Park, Gyu Tae;Kim, Jae Ho
    • 생체재료학회지
    • /
    • 제22권4호
    • /
    • pp.311-318
    • /
    • 2018
  • Background: Tissue regeneration includes delivering specific types of cells or cell products to injured tissues or organs for restoration of tissue and organ function. Stem cell therapy has drawn considerable attention since transplantation of stem cells can overcome the limitations of autologous transplantation of patient's tissues; however, it is not perfect for treating diseases. To overcome the hurdles associated with stem cell therapy, tissue engineering techniques have been developed. Development of stem cell technology in combination with tissue engineering has opened new ways of producing engineered tissue substitutes. Several studies have shown that this combination of tissue engineering and stem cell technologies enhances cell viability, differentiation, and therapeutic efficacy of transplanted stem cells. Main body: Stem cells that can be used for tissue regeneration include mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells. Transplantation of stem cells alone into injured tissues exhibited low therapeutic efficacy due to poor viability and diminished regenerative activity of transplanted cells. In this review, we will discuss the progress of biomedical engineering, including scaffolds, biomaterials, and tissue engineering techniques to overcome the low therapeutic efficacy of stem cells and to treat human diseases. Conclusion: The combination of stem cell and tissue engineering techniques overcomes the limitations of stem cells in therapy of human diseases, and presents a new path toward regeneration of injured tissues.

폐흡충 피낭유충 조직에 있어서 특정항원성 단백질의 분포 (The Localization of the Specific Antigenic Protein in the Tissue of Paragonimus westermani Metacercaria)

  • 김수진;노태훈;주경환;임한종
    • Applied Microscopy
    • /
    • 제27권4호
    • /
    • pp.403-416
    • /
    • 1997
  • In order to observe the localization of the specific antigenic protein in the tissue of Paragonimus westermani metacercaria, immunogoldlabeling method was applied using IgG of the dog which were infected with Paragonimus westermani metacercaria and IgG of rabbits which were immunized with purified 23 kDa protein from metacercaria of the Paragenimus westermani. The metacercaria worm tissues obtained from Cambaroides similis were embedded in Lowicryl HM20 medium, treated with infected and immunized IgG and protein A gold complex (particle size; 12 nm) and observed by electron microscope. In the tissue antigen of Paragonimus westermani metacercaria, the content of excretory bladder which was highly dense electron density was constituted in the excretory bladder of the parenchymal tissue. In the metacercaria tissues antigen reacted with IgG of infected dog. Labeled gold particles distributed on the interstitial matrix of parenchymal cells, fibrous granules of parenchymal tissue and the content of excretory bladder. High antigenicity was observed on content of excretory bladder. It was found to be specifically distributed at the tissue of Paragonimus westermani metacercaria. In the tissues antigen reacted with IgG of immunized rabbit. Labeled gold particles randomly distributed on the interstitial matrix and fibrous granules of parenchymal tissue but in the content of excretory bladder of Paragonimus westermani metacercaria, gold particles were richly labeled. Therefore, the 23 kDa protein contained with Paragonimus westermani metacercaria was found protein which was specifically constituted at the content of excretory bladder of Paragonimum westermani metacercaria. The 23 kDa protein was commonly contained from of Paragonimus westermani metacercaria to adult and showed strong antigenicity against the immunized and infected IgG.

  • PDF

Implications of specific gene expression patterns in enamel knot in tooth development

  • Kim, Tae-Young;Neupane, Sanjiv;Aryal, Yam Prasad;Lee, Eui-Seon;Kim, Ji-Youn;Suh, Jo-Young;Lee, Youngkyun;Sohn, Wern-Joo;An, Seo-Young;Ha, Jung-Hong;An, Chang-Hyeon;Kim, Jae-Young
    • International Journal of Oral Biology
    • /
    • 제45권1호
    • /
    • pp.25-31
    • /
    • 2020
  • Enamel knot (EK)-a signaling center-refers to a transient morphological structure comprising epithelial tissue. EK is believed to regulate tooth development in early organogenesis without its own cellular alterations, including proliferation and differentiation. EKs show a very simple but conserved structure and share functions with teeth of recently evolved vertebrates, suggesting conserved signaling in certain organs, such as functional teeth, through the course of evolution. In this study, we examined the expression patterns of key EK-specific genes including Dusp26, Fat4, Meis2, Sln, and Zpld1 during mice embryogenesis. Expression patterns of these genes may reveal putative differentiation mechanisms underlying tooth morphogenesis.

The Suicide Gene Diphtheria Toxin A Based Therapy in Cancer Treatment

  • Nguyen.T.Q., Anh;Jeong, Dong-Kee
    • 한국발생생물학회지:발생과생식
    • /
    • 제16권3호
    • /
    • pp.155-168
    • /
    • 2012
  • Therapeutic cancer is a long lasting and turbulent history accompany with the milestones in surgical intervention, chemotherapy and radiotherapy. In the past decade, however, metastatic cancer still obstinately exists challenging the professional scientist. Beside the major forms of cancer treatment, Diphtheria toxin (DT) which is produced by a pathogenic strain of bacterium Corynebacterium diphtheria to shield themselves against the other dangerous organism, have been researched as a potential candidate to overcome the drawback such as non-specific, non-effect to drug resistant cancer cell and side effects when using chemotherapy and radiotherapy. In the context of suicide gene therapy, the DT expression under controlling of tissue-specific promoter will be targeted in cancer cell but defect in normal cell. The molecular mechanism, characteristic of DT-bases therapy and prominent achievements of preclinical and clinical studies for the past decade are summarized and discussed in this review.

Specific Targeting of Fluorescein Isothiocyanate with Ep-CAM Antibody(Specific targeting of FITC with Ep-CAM Antibody)

  • Lee, Young-Tae;Tae, Gun-Sik
    • Journal of Photoscience
    • /
    • 제10권3호
    • /
    • pp.237-240
    • /
    • 2003
  • The tetradecameric peptide (K47-K60) near the NH$_2$-terminal region of epithelial-cell adhesion molecule (Ep-CAM) was chosen as antigenic site and a polyclonal antibody was generated, which could recognize Ep-CAM from the mouse colon tissue or the colon cancer cell, CT-26, in Western blot analysis. Then, the fluorescein isothiocyanate (FITC), a fluorescence dye, was conjugated with the affinity purified Ep-CAM antibody using thiocyanate and the amino groups of FITC and antibody, respectively. The molar ratio of FITC to antibody was estimated approximately 1.86 to 1.00 by measuring the optical densities at 492 nm and 280 nm. Ep-CAM antibody-FITC conjugate was then used for immunohistochemistry of the CT-26 cells. Judging from the shapes formed by fluorescence, the Ep-CAM antibody could delivered FITC to the surface of cells in which Ep-CAM was expressed. This result implies that Ep-CAM antibody could be also used for the tissue-specific delivery of the photosensitizer to the target protein via antigen-antibody interaction.

  • PDF

Immune Disorders and Its Correlation with Gut Microbiome

  • Hwang, Ji-Sun;Im, Chang-Rok;Im, Sin-Hyeog
    • IMMUNE NETWORK
    • /
    • 제12권4호
    • /
    • pp.129-138
    • /
    • 2012
  • Allergic disorders such as atopic dermatitis and asthma are common hyper-immune disorders in industrialized countries. Along with genetic association, environmental factors and gut microbiota have been suggested as major triggering factors for the development of atopic dermatitis. Numerous studies support the association of hygiene hypothesis in allergic immune disorders that a lack of early childhood exposure to diverse microorganism increases susceptibility to allergic diseases. Among the symbiotic microorganisms (e.g. gut flora or probiotics), probiotics confer health benefits through multiple action mechanisms including modification of immune response in gut associated lymphoid tissue (GALT). Although many human clinical trials and mouse studies demonstrated the beneficial effects of probiotics in diverse immune disorders, this effect is strain specific and needs to apply specific probiotics for specific allergic diseases. Herein, we briefly review the diverse functions and regulation mechanisms of probiotics in diverse disorders.

Members of the ran family of stress-inducible small GTP-binding proteins are differentially regulated in sweetpotato plants

  • Kim, Young-Hwa;Huh, Gyung Hye
    • Journal of Plant Biotechnology
    • /
    • 제40권1호
    • /
    • pp.9-17
    • /
    • 2013
  • Ran is a small GTP-binding protein that binds and subsequently hydrolyzes GTP. The functions of Ran in nuclear transport and mitotic progression are well conserved in plants and animals. In animal cells, stress treatments cause Ran relocalization and slowing of nuclear transport, but the role of Ran proteins in plant cells exposed to stress is still unclear. We have therefore compared Ran genes from three EST libraries construed from different cell types of sweetpotato and the distribution pattern of Ran ESTs differed according to cell type. We further characterized two IbRan genes. IbRan1 is a specific EST to the suspension cells and leaf libraries, and IbRan2 is specific EST to the root library. IbRan1 showed 94.6 % identity with IbRan2 at the amino acid level, but the C-terminal region of IbRan1 differed from that of IbRan2. These two genes showed tissue-specific differential regulation in wounded tissues. Chilling stress induced a similar expression pattern in both IbRan genes in the leaves and petioles, but they were differently regulated in the roots. Hydrogen peroxide treatment highly stimulated IbRan2 mRNA expression in the leaves and petioles, but had no significant effect on IbRan1 gene expression. These results showed that the transcription of these two IbRan genes responds differentially to abiotic stresses and that they are subjected to tissue-specific regulation. Plant Ran-type small G-proteins are a multigenic family, and the characterization of each Ran genes under various environmental stresses will contribute toward our understanding of the distinctive function of each plant Ran isoform.