• Title/Summary/Keyword: Tissue paper

Search Result 663, Processing Time 0.026 seconds

Resin cement bond to tooth (레진시멘트와 치아와의 접착)

  • Lee, Jung-Hwan
    • The Journal of the Korean dental association
    • /
    • v.53 no.3
    • /
    • pp.187-194
    • /
    • 2015
  • This paper reflects on the state of the art of two kinds of tooth hard tissue (enamel and dentin) bonding with resin cement. After presenting composition of resin cement, concepts of enamel bonding and resin bonding are addressed. Special attention is devoted to the concept and advantage of self-etching technique. Finally, recommended clinical performance regarding bonding to tooth with resin cement is summarized.

Clinical animal test for development of osseointegration implant;application for beagle tibia (골융합 임플란트 개발을 위한 동물임상실험;비글견 경골 적용)

  • Choi, Kyong-Joo;Kim, Shin-Ki;Mun, Mu-Seong;An, Jae-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1373-1377
    • /
    • 2003
  • Current prostheses for amputees are generally extrinsic wearing socket type that the coupling between body stump and appliance wraps the soft tissue and this structure causes several problems :applying direct weight to soft tissue such as skin and muscle, skin trouble of contacting area and pain. In this study, osseointegration implant is a method to directly connect prosthesis to the residual stump skeletal tissue of arm, finger and leg through surgical operation. Technology presented in this paper essentially solves the problems of pain and abnormal weight transfer system indicated above and recovers the functions of the amputated arm and leg. In this paper, implant shape was designed for the first step for the development of osseointegration implant and then we studied the possibility to apply this osseointegration implant to human body by performing implant insertion operation to beagle tibia for the clinical animal test and normal beagle's gait analysis was executed in order to quantitatively verify the beagle's skeletal functions after the implant insertion.

  • PDF

Three-Dimensional Printed 3D Structure for Tissue Engineering (3 차원 프린팅 기술로 제작된 조직공학용 3 차원 구조체)

  • Park, Jeong Hun;Jang, Jinah;Cho, Dong-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.10
    • /
    • pp.817-829
    • /
    • 2014
  • One of the main issues in tissue engineering has been the development of a three-dimensional (3D) structure, which is a temporary template that provides the structural support and microenvironment necessary for cell growth and differentiation into the target tissue. In tissue engineering, various biomaterials and their processing techniques have been applied for the fabrication of 3D structures. In particular, 3D printing technology enables the fabrication of a complex inner/outer architecture using a computer-aided design and manufacturing (CAD/CAM) system, and it has been widely applied to the fabrication of 3D structures for tissue engineering. Novel cell/organ printing techniques based on 3D printing have also been developed for the fabrication of a biomimetic structure with various cells and biomaterials. This paper presents a comprehensive review of the functional scaffold and cell-printed structures based on 3D printing technology and the application of this technology to various kinds of tissues regeneration.

Effect on Tenascin Expression of Low Power Generating Laser Irradiation during Wound Healing Process (저출력 레이저가 창상치유과정에서 Tenascin 발현에 미치는 영향)

  • Sang-Bae Kim;Chong-Youl Kim
    • Journal of Oral Medicine and Pain
    • /
    • v.19 no.1
    • /
    • pp.33-43
    • /
    • 1994
  • The purpose of this paper was to observe the influence of Ga-As semiconductor-low power generating laser on she appearance and actions of tenascin, extracellular matrix, as healing process of intentional wound on the experimental animals is taking place. 35 rabbits were divided into control and experimental group. ; and on each, 3mm-long and 2mm-deep, surgical wounds were created on buccal oral mucosa and thoracodorsal portion of skin. Ga-As laser was applied to the experimental group starting a day of the day the wounds were created , the laser was applied for 5 minutes every other day. Tissue samples were taken after the 2, 4, 7, 10, and 14 days after wound formation. Then tile healing process of experimental and control groups were observed and compared, using light microscope. Afterwards, the samples were immunohistochemical stained and again observed tenascin by quantitative measuring. The following results were obtained : 1. Tenascin was observed prevalently on epithelial cells, border area of dermis, and interstitial matrix between connective tissue layers in both experimental and control groups. 2. In oral mucosa, the experimental group showed significant increase in the appearance of tenascin after 4 days compared to the control group, but after 10 days, it decreased to a point which is even less than the control group. 3. In the skin samples, the pattern of appearance of tenascin was the same in both groups, but there was some difference concerning when the peak period was shown, In the experimental group, the peak period of tenascin expression was the 7 days after wound formation in epithelium and connective tissue. In the control group, the peak period was 10 days after. 4. In both the experimental and control groups, tenascin first appeared in the epithelium near the wound area and submucosa, and then spread on the underlying connective tissue. In conclusion, appearance of tenascin is closely related to regeneration of epithelium and development of granulation tissue : therefore, low power laser, which fastnes appearance of tenascin, is sure to faciltate healing process of oral mucosa.

  • PDF

Collagen Scaffolds in Cartilage Tissue Engineering and Relevant Approaches for Future Development

  • Irawan, Vincent;Sung, Tzu-Cheng;Higuchi, Akon;Ikoma, Toshiyuki
    • Tissue Engineering and Regenerative Medicine
    • /
    • v.15 no.6
    • /
    • pp.673-697
    • /
    • 2018
  • BACKGROUND: Cartilage tissue engineering (CTE) aims to obtain a structure mimicking native cartilage tissue through the combination of relevant cells, three-dimensional scaffolds, and extraneous signals. Implantation of 'matured' constructs is thus expected to provide solution for treating large injury of articular cartilage. Type I collagen is widely used as scaffolds for CTE products undergoing clinical trial, owing to its ubiquitous biocompatibility and vast clinical approval. However, the long-term performance of pure type I collagen scaffolds would suffer from its limited chondrogenic capacity and inferior mechanical properties. This paper aims to provide insights necessary for advancing type I collagen scaffolds in the CTE applications. METHODS: Initially, the interactions of type I/II collagen with CTE-relevant cells [i.e., articular chondrocytes (ACs) and mesenchymal stem cells (MSCs)] are discussed. Next, the physical features and chemical composition of the scaffolds crucial to support chondrogenic activities of AC and MSC are highlighted. Attempts to optimize the collagen scaffolds by blending with natural/synthetic polymers are described. Hybrid strategy in which collagen and structural polymers are combined in non-blending manner is detailed. RESULTS: Type I collagen is sufficient to support cellular activities of ACs and MSCs; however it shows limited chondrogenic performance than type II collagen. Nonetheless, type I collagen is the clinically feasible option since type II collagen shows arthritogenic potency. Physical features of scaffolds such as internal structure, pore size, stiffness, etc. are shown to be crucial in influencing the differentiation fate and secreting extracellular matrixes from ACs and MSCs. Collagen can be blended with native or synthetic polymer to improve the mechanical and bioactivities of final composites. However, the versatility of blending strategy is limited due to denaturation of type I collagen at harsh processing condition. Hybrid strategy is successful in maximizing bioactivity of collagen scaffolds and mechanical robustness of structural polymer. CONCLUSION: Considering the previous improvements of physical and compositional properties of collagen scaffolds and recent manufacturing developments of structural polymer, it is concluded that hybrid strategy is a promising approach to advance further collagen-based scaffolds in CTE.

The analysis of tissue elasticity using computer-controlled ultrasonography in the affected upper limb of patients after breast cancer surgery

  • Chan-Hyuk Kwon;Min Woo Ha
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.6
    • /
    • pp.167-173
    • /
    • 2024
  • In this paper, we propse a quantitative research by investigating the subcutaneous tissue elasticity by using ultrasonography in lymphedema patients after breast cancer surgery. Lymphedema patients who took breast cancer operation were included. Thickness of subcutaneous tissue was assessed at two spots; 10cm below elbow (forearm) and 10cm above elbow (upper arm), not only in affected side but also in sound side. By using probe attached to real-time pressure sensor, stress-strain curves were obtained. We defined tissue elasticity as slope of that curve at range of 7.5~15% of strain to avoid toe region. By comparing the elasticity of normal side and that of affected side, lymphedema tissues were classified into 'softer' and 'harder' tissues. Overall 30 cases of lymphedema tissues and 30 cases of sound tissues were checked. The difference of the elasticity between normal and affected side ranged from -3.98 N/m2 to 1.40 N/m2. The lymphedema tissues were classified into 17 softer tissues and 13 harder tissues. No demographic and clinical values, including clinical stage of lymphedema, showed statistically meaningful differences between two groups. Evaluation of subcutaneous tissue elasticity with ultrasonography and real-time pressure sensor could be one of the useful tools for investigation of lymphedema tissue characteristics.

Measurements of Acoustic Properties of Tofu and Acorn Curd as Potential Tissue-mimicking Materials

  • Li Ying;Guntur S.R.Anjaneya Reddy;Choi Min Joo;Paeng Dong-Guk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.4E
    • /
    • pp.132-138
    • /
    • 2005
  • The purpose of this study is to measure the acoustic properties of Tofu and Acorn Curd (Dotori Muk), which are possibly used as tissue mimicking materials (TMMs). Due to its availability and low cost, Tofu was suggested as a TMM by several researchers who measured only sound speed and attenuation. The acoustic properties of Tofu and Muk including the backscattering coefficient were measured in this paper. Sound speed was measured by the time shift in a pulse echo setup. Attenuation coefficients and backscattering coefficients were measured by a broadband method using both 5 MHz and 10 MHz transducers in the frequency domain. The measured acoustic properties of both Tofu and Muk are observed to be similar to those of biological tissues such as beef liver or beef heart.

A Study on the Measurement of Tissue Blood Flow by the Self-Mixing Effect of Laser Diode (레이저 다이오드의 자기혼합 효과를 이용한 조직혈류 측정에 관한 연구)

  • Ko, Ran-Woo
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.57-64
    • /
    • 1994
  • This paper describes the measurement of tissue blood flow by the the self-mixing effect of laser diode. A Laser doppler signals due to the moving object and the tissue blood flow were detected by the self-mixing effect of laser diode. The Doppler shifted frequency was changed linearly with the driving frequency of moving object and was increase after the exercise. The results of in-vivo experiment were consistent with the result of exercise physiology.

  • PDF

The Effects of Physiological Heating and Exercise on the Optical Properties of Biological Tissue. (가열과 운동에 의한 생체조직내의 생리적 변화에 따른 광학적 특성의 변화에 관한 연구)

  • Lim, Hyun-Soo;Huh, Woong
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.81-88
    • /
    • 1993
  • This paper is the study of the reflectance of light from biological tissue for red and Infrared wavelengths and relates the acquired reflectance data to expected physiological changes within the skin and muscle layers associated with heat and exercise. The instrument was disigned to collect data from the calf muscle in human subjects with probe located at the surface of skin. Rapid data acquisition method allowed monitoring of rapid changes in reflecttance due to a stimulus. This study demonstrates that changes in O2 saturation and blood fractional volume expected within the dermis and muscle layers were asserted by examining the slopes of the plotted index for heat and exercise. The results presented in thls study support the claim that reflectance can separately discriminate between changes of blood volume and oxygenation in muscle and in skin. The data demonstrate the ability to measure consistent changes In tissue optical properties during exercise and heat.

  • PDF

Development of Laser Speckle Flowgraphy System for Monitoring Blood Flow in Skin Tissue (레이저 산란 현상을 이용한 피부혈류 화상화 시스템의 개발)

  • Lee, M.C.;Fujii, H.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.392-396
    • /
    • 2007
  • In this paper, we develop a new system to visualize the blood flow map in skin tissue, using the technique of Laser Speckle Flowgraphy (LSFG). The measuring unit consists of the laser diode, imaging system, line sensor, scanning mirror, and one-board microcomputer. The speckle signal is analyzed and sent to a PC, where the blood flow in a tissue area of $14mm{\times}26 mm$ is evaluated and displayed in a 2-D color map. It is demonstrated that the new LSFG instrument is useful to evaluate the degree of allergic reaction in patch test.