• Title/Summary/Keyword: Tissue inhomogeneity

Search Result 39, Processing Time 0.024 seconds

Clinical Application of in Vivo Dosimetry System in Radiotherapy of Pelvis (골반부 방사선 치료 환자에서 in vivo 선량측정시스템의 임상적용)

  • Kim, Bo-Kyung;Chie, Eui-Kyu;Huh, Soon-Nyung;Lee, Hyoung-Koo;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.37-49
    • /
    • 2002
  • The accuracy of radiation dose delivery to target volume is one of the most important factors for good local control and less treatment complication. In vivo dosimetry is an essential QA procedure to confirm the radiation dose delivered to the patients. Transmission dose measurement is a useful method of in vivo dosimetry and it's advantages are non-invasiveness, simplicity and no additional efforts needed for dosimetry. In our department, in vivo dosimetry system using measurement of transmission dose was manufactured and algorithms for estimation of transmission dose were developed and tested with phantom in various conditions successfully. This system was applied in clinic to test stability, reproducibility and applicability to daily treatment and the accuracy of the algorithm. Transmission dose measurement was performed over three weeks. To test the reproducibility of this system, X-tay output was measured before daily treatment and then every hour during treatment time in reference condition(field size; $10 cm{\times} 10 cm$, 100 MU). Data of 11 patients whose pelvis were treated more than three times were analyzed. The reproducibility of the dosimetry system was acceptable with variations of measurement during each day and over 3 week period within ${\pm}2.0%$. On anterior- posterior and posterior fields, mean errors were between -5.20% and +2.20% without bone correction and between -0.62% and +3.32% with bone correction. On right and left lateral fields, mean errors were between -10.80% and +3.46% without bone correction and between -0.55% and +3.50% with bone correction. As the results, we could confirm the reproducibility and stability of our dosimetry system and its applicability in daily radiation treatment. We could also find that inhomogeneity correction for bone is essential and the estimated transmission doses are relatively accurate.

Comparison of Experimental and Radiation Therapy Planning (RTP) Dose Distributions on Air Cavity (공동(air cavity)의 존재 시 실험적 선량분포와 치료계획상의 선량분포 비교)

  • Kim, Yon-Lae;Suh, Tae-Suk;Ko, Shin-Gwan;Lee, Jeong-Woo
    • Journal of radiological science and technology
    • /
    • v.33 no.3
    • /
    • pp.261-268
    • /
    • 2010
  • This study is compared that the dose distribution by experimentation and radiation therapy planning (RTP) when the air cavity region was treated high energy photon. The dose measurements were performed with a 6 MV photon beam of linear accelerator. The polystyrene and self made acyl phantom were similar to tissue density of the human body. A parallel plate chamber was connected to an electrometer. The measurement setup was SCD (Source Chamber Distance) 100 cm and the distance of surface from air cavity was 3 cm. Absorbed dose of interface were measured by area and height. The percent depth dose were measured presence and absence of air cavity, depth according to a ratio of field size and air cavity size. The dose distribution on planning was expressed to do the inhomogeneity correction. As the area of air cavity was increased, the absorbed dose were gradually reduced. It was slightly increased, when the height of air cavity was changed from 0 cm to 0.5 cm. After the point, dose was decreased. In case of presence of air cavity, dose after distal air cavity interface was more great than absence of air cavity. The rebuild up by field size and area of air cavity occurred for field size, $4{\times}4\;cm^2$, $5{\times}5\;cm^2$ and $6{\times}6\;cm^2$, with fixed on area of air cavity, $5{\times}5\;cm^2$. But it didn't occur at $10{\times}10\;cm^2$ field size. On the contrary, the field size was fixed on $5{\times}5\;cm^2$, rebuild up occurred in area of air cavity, $4{\times}4\;cm^2$, $5{\times}5\;cm^2$. but, it did not occur for air cavity, $2{\times}2\;cm^2$, $3{\times}3\;cm^2$. All of the radiation therapy planning were not occurred rebuild up. It was required to pay attention to treat tumor in air cavity because the dose distribution of planning was different from the dose distribution of patient.

Interstitial Hyperthermia by Radiofrequency Needle Electrode System : Phantom and Canine Brain Studies (8 MHz 라디오파를 이용한 자입식 온열치료 -조직등가물질을 통한 온도분포 및 개 뇌실질의 조직병리 변화에 관한 연구-)

  • Lee, Hyung-Sik;Chu, Sung-Sil;Sung, Jin-Sil;Suh, Chang-Ok;Kim, Gwi-Eon;Loh-John-Juhn-Kyu;Kim, Young-Soo;Kim, Sun-Ho;Chung, Song-Sup;Han, Eun-Kyung;Kim, Tae-Seung
    • Radiation Oncology Journal
    • /
    • v.9 no.1
    • /
    • pp.27-35
    • /
    • 1991
  • An interstitial radiofrequency needle electrode system was constructed for interstitial heating of brain tissue. Radiofrequency electrodes with Thermotron RF 8 were tested in an agar phantom and in a normal canine brain to determine how variations in physical factors affected temperature distributions. Temperature distributions were checked after heating with 1 mm diameter needle electrode implants on the corners of 1 and 2 cm squares in a phantom and plot isotherms for various electrodes arrangement. We observed that the 1 cm square array would heat a volume with a 1.25 cm radius circular field cross section to therapeutic temperatures ($90\%$ relative SAR using Tm) and the 2 cm square array with a 1.75 cm radius rectangular field with central inhomogeneity. With 2 cm long electrode implants, we observed that the 1 cm square array would heat a 3 cm long sagittal section to therapeutic temperature ($90\%$ relative SAR using Tm). We found that radiofrequency electrodes could be selected to match the length of the heating area without affecting its performance. The histopathological changes associated with RF heating of normal canine brains have been correlated with thermal distributions. RF needle electrode heating was applied for 50min to generate tissue temperatures of $43^{\circ}C$. We obtained a quarter of the heated tissue material immediately after heating and sacrificed at intervals from $7\sim30$days. The acute stage (immediately after heating) was demonstrated by liquefactive necrosis, pyknosis of neuronal element in the gray matter and by some polymer-phonuclear leukocytes infiltration. The appearance of lipid-laden macrophages surrounding the area of liquefaction necrosis was demonstrated in all three sacrificed dogs. Mild gliosis occurring around the necrosis was demonstrated in the last sacrificed (Days 30) canine brain.

  • PDF

Radiotherapy Treatment Planning with Computed Tomography in Malignant Tumors of the Chest-Comparison of various techniques (흉부악성종양(胸部惡性腫瘍)의 방사선치료계획(放射線治療計劃)에 있어서 전산화단층촬영(電算花斷層撮影)의 이용(利用)에 관한 연구(硏究))

  • Lee, Joo Hyuk;Koh, Kyoung Hwan;Ha, Sung Whan;Han, Man Chung
    • Radiation Oncology Journal
    • /
    • v.1 no.1
    • /
    • pp.55-60
    • /
    • 1983
  • To evaluate the usefulness of computed tomography (CT) in radiotherapy treatment planning in malignant tumors of thoracic cage, the computer generated dose distributions were compared between plans based on conventional studies and those based on CT scan. 22 cases of thoracic malignancies, 15 lung cancers and 7 esophageal cancers, diagnosed and treated in Department of Therapeutic Radiology of Seoul National University Hospital from September, 1982 to April, 1983, were analyzed. In lung cancers, dose distribution in plans using AP, PA parallel opposing ports with posterior spinal cord block and in plans using box technique both based on conventional studies were compared with dose distribution using AP, PA and two oblique ports based on CT scan. In esophageal cancers, dose distribution in plans based on conventional studies and those based on CT scans, both using 3 port technique were compared. The results are as follows: 1. Parallel opposing field technique were inadequate in all cases of lung cancers, as portion of primary tumor in 13 of 15 cases and portion of mediastinum in all were out of high dose volume. 2. Box technique was inadequate in 5 of 15 lung cancers as portion of primary tumor was not covered and in every case the irradiated normal lung volume was quite large. 3. Plans based on CT scan were superior to those based on conventional studies as tumor was demarcated better with CT and so complete coverage of tumor and preservation of more normal lung volume could be made. 4. In 1 case of lung cancer, tumor localization was nearly impossible with conventional studies, but after CT scan tumor was more clearly defined and localized. 5. In 1 of 7 esophageal cancers, the radiation volume should be increased for marginal coverage after CT scan. 6. Depth dose correction for tissue inhomogeneity is possible with CT, and exact tumor dose can be calculated. As a result radiotherapy treatment planning based on CT scan has a pteat advantage over that based on conventional studies.

  • PDF

The Effect of Therapy Oriented CT in Radiation Therapy Planning (치료 계획용 전산화 단층촬영이 방사선 치료계획에 미치는 효과)

  • Kim, Sung-Kyu;Shin, Sei-One;Kim, Myung-Se
    • Radiation Oncology Journal
    • /
    • v.5 no.2
    • /
    • pp.149-155
    • /
    • 1987
  • The success of radioation therapy depends on exact treatment of the tumor with significant high dose for maximizing local control and excluding the normal tissues for minimizing unwanted complications. To achieve these goals, correct estimation of target volume in three dimension, exact dose distribution in tumor and normal critical structures and correction of tissue inhomogeneity are required. The effect of therapy oriented CT (plannng CT) were compared with conventional simulation method in necessity of planning change, set dose, and proper distribution of tumor dose. Of 365 new patients examined, planning CT was performed in 104 patients $(28\%)$. Treatment planning was changed in $47\%$ of head and neck tumor, $79\%$ of intrathoracic tumor and $63\%$ of abdmonial tumor. in breast cancer and musculoskeletal tumors, planning CT was recommended for selection of adequate energy and calculation of exact dose to critical structures such as kidney or spinal cord. The average difference of tumor doses between CT planning and conventional simulation was $10\%$ in intrathoracic and intra-abdominal tumors but $20\%$ in head and neck tumors which suggested that tumor dose may be overestimated in conventional simulation Although some limitations and disadvantages including the cost and irradiation during CT are still criticizing, our study showed that CT Planning is very helpful in radiotherapy Planning.

  • PDF

A Study on MR Imaging Method for The Patient with Inserting Shoulder Joint Suture Anchor (견관절 삽입술을 시행한 환자의 자기 공명 영상법에 관한 연구)

  • Park, Eui-Cheol;Bae, Seok-Hwan;Ryu, Yeun-Chul;Park, Young-Joon;Kim, Yong-Gwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.513-519
    • /
    • 2021
  • Metallic suture anchors are very useful and common fixation devices that are inserted into the target bone to sustain the tendon of a patient with musculus supraspinatus tendon ruptures. On the other hand, the presence of a metallic material prosthesis, such as a metal suture anchor, causes severe MR imaging artifacts, including field distortion, signal loss, and failure of fat suppression. The difference in magnetic susceptibility between metal and other organic materials causes magnetic field distortion surrounding the prosthesis. The resulting magnetic field inhomogeneity makes the images with a lower signal-to-noise ratio and distortion. For a patient with a suture anchor implanted, MR imaging is the golden standard for determining the postoperative prognosis, and a fat-saturation sequence is one of the imaging methods most affected by metal-induced artifacts. In this study, three fat-saturation sequences were compared. Artifact quantification and contrast comparison between the supraspinatus tendon and the surrounding muscle were presented. The images obtained using the STIR pulse sequence showed fewer susceptibility artifacts and better visibility in the supraspinatus tendon and the tissue area. Therefore, the STIR sequence is the most appropriate fat-saturation imaging method for patients with a metallic prosthesis.

The Evaluation of the dose calculation algorithm(AAA)'s Accuracy in Case of a Radiation Therapy on Inhomogeneous tissues using FFF beam (FFF빔을 사용한 불균질부 방사선치료 시 선량계산 알고리즘(AAA)의 정확성 평가)

  • Kim, In Woo;Chae, Seung Hoon;Kim, Min Jung;Kim, Bo Gyoum;Kim, Chan Yong;Park, So Yeon;Yoo, Suk Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.321-327
    • /
    • 2014
  • Purpose : To verify the accuracy of the Ecilpse's dose calculation algorithm(AAA:Analytic anisotropic algorithm) in case of a radiation treatment on Inhomogeneous tissues using FFF beam comparing dose distribution at TPS with actual distribution. Materials and Methods : After acquiring CT images for radiation treatment by the location of tumors and sizes using the solid water phantoms, cork and chest tumor phantom made of paraffin, we established the treatment plan for 6MV photon therapy using our radiation treatment planning system for chest SABR, Ecilpse's AAA(Analytic anisotropic algorithm). According to the completed plan, using our TrueBeam STx(Varian medical system, Palo Alto, CA), we irradiated radiation on the chest tumor phantom on which EBT2 films are inserted and evaluated the dose value of the treatment plan and that of the actual phantom on Inhomogeneous tissue. Results : The difference of the dose value between TPS and measurement at the medial target is 1.28~2.7%, and, at the side of target including inhomogeneous tissues, the difference is 2.02%~7.40% at Ant, 4.46%~14.84% at Post, 0.98%~7.12% at Rt, 1.36%~4.08% at Lt, 2.38%~4.98% at Sup, and 0.94%~3.54% at Inf. Conclusion : In this study, we discovered the possibility of dose calculation's errors caused by FFF beam's characteristics and the inhomogeneous tissues when we do SBRT for inhomogeneous tissues. SBRT which is most popular therapy method needs high accuracy because it irradiates high dose radiation in small fraction. So, it is supposed that ideal treatment is possible if we minimize the errors when planning for treatment through more study about organ's characteristics like Inhomogeneous tissues and FFF beam's characteristics.

Study on Computerized Treatment Plan of Field-in-Field Intensity Modulated Radiation Therapy and Conventional Radiation Therapy according to PBC Algorithm and AAA on Breast Cancer Tangential Beam (유방암 접선조사에서 PBC 알고리즘과 AAA에 따른 Field-in-Field Intensity Modulated Radiation Therapy와 Conventional Radiation Therapy 전산화 치료계획에 대한 고찰)

  • Yeom, Mi-Suk;Bae, Seong-Soo;Kim, Dae-Sup;Back, Geum-Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.1
    • /
    • pp.11-14
    • /
    • 2012
  • Purpose: Anisotropic Analytical Algorithm (AAA) provides more accurate dose calculation regarding impact on scatter and tissue inhomogeneity in comparison to Pencil Beam Convolution (PBC) algorithm. This study tries to analyze the difference of dose distribution according to PBC algorithm and dose calculation algorithm of AAA on breast cancer tangential plan. Materials and Methods: Computerized medical care plan using Eclipse treatment planning system (version 8.9, VARIAN, USA) has been established for the 10 breast cancer patients using 6 MV energy of Linac (CL-6EX, VARIAN, USA). After treatment plan of Conventional Radiation Therapy plan (Conventional plan) and Field-in-Field Intensity Modulated Radiation Therapy plan (FiF plan) using PBC algorithm has been established, MU has been fixed, implemented dose calculation after changing it to AAA, and compared and analyzed treatment plan using Dose Volume Histogram (DVH). Results: Firstly, as a result of evaluating PBC algorithm of Conventional plan and the difference according to AAA, the average difference of CI value on target volume has been highly estimated by 0.295 on PBC algorithm and as a result of evaluating dose of lung, $V_{47Gy}$ and $V_{45Gy}$ has been highly evaluated by 5.83% and 4.04% each, Mean dose, $V_{20Gy}$, $V_{5Gy}$, $V_{3Gy}$ has been highly evaluated 0.6%, 0.29%, 6.35%, 10.23% each on AAA. Secondly, in case of FiF plan, the average difference of CI value on target volume has been highly evaluated on PBC algorithm by 0.165, and dose on ipsilateral lung, $V_{47Gy}$, $V_{45Gy}$, Mean dose has been highly evaluated 6.17%, 3.80%, 0.15% each on PBC algorithm, $V_{20Gy}$, $V_{5Gy}$, $V_{3Gy}$ has been highly evaluated 0.14%, 4.07%, 4.35% each on AAA. Conclusion: When calculating with AAA on breast cancer tangential plan, compared to PBC algorithm, Conformity on target volume of Conventional plan, FiF plan has been less evaluated by 0.295, 0.165 each. For the reason that dose of high dose region of ipsilateral lung has been showed little amount, and dose of low dose region has been showed much amount, features according to dose calculation algorithm need to be considered when we evaluate dose for the lungs.

  • PDF

Usefulness evaluation of Hybrid planning through dosimetric comparision of Three Dimensinal Conformal Radiation Radiotherapy and Hybrid planning for left breast cancer (유방암 환자의 방사선 치료시 Energy와 Wedge를 combine한 Hybrid plan의 유용성 평가)

  • Chae, Moon Ki;Park, Byung Soo;Ahn, Jong Ho;Song, Ki Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.91-98
    • /
    • 2014
  • Purpose : To compare the dosimetry for the left breast cancer treatment between three dimensional conformal radiation radiotherapy (3D-CRT) and Hybrid planning and to estimate usefulness of Hybrid planning Materials and Methods : Five patients with left breast cancer were included in the study. They were planned using several different radiotherapy techniques including: 1)open rectangular field, 2)tangential wedge-based field 3)field in field, 4)hybrid planning(energy, wedge combine). For each patient planning was using Light Speed RT-16 CT and PINNACLE planning system-ver.9.2. Hybrid plan was made using same system and using the same targets and optimization goals. We comparing the Homogeneity Index(HI), normal organs at the does-volume histogram(DVH) Results : In all plans, the Homogeneity Index(HI) of Hybrid planning was significantly better than other. Dose comparison of HI= 2D-RT:38.32, TW:38.32, FIF:29.22, HYBRID:30.57. 2D-RT, TW, FIF Hybrid$V_{75_-lung}$=112.33, 125.14, 121.3, 123.78. $V_{50_-lung}$=155.43, 159.62, 157.96, 159.06. $V_{25_-lung}$=199.86, 200.22, 198.65, 200.31. $V_{50_-heart}$=26.07, 27.1, 26.85, 27.17 $V_{30_-heart}$=33.71, 34.37, 34.15, 34.65 Conclusion : In summary, 3D-CRT, Hybrid planning techniques were found to have acceptableCTV coverage in our study. However the Hybrid planning increased radiation dose exposure to normal tissue. If you apply for treatment of inhomogeneity areas like lung, For best results will be achieved.