• 제목/요약/키워드: Tissue growth

검색결과 2,348건 처리시간 0.033초

수술로 절제된 비소세포폐암 조직에서 예후인자로서 VEGF와 bFGF 발현의 의의 (Prognostic Value of Vascular Endothelial Growth Factor (VEGF) and Basic Fibroblast Growth Factor (bFGF) Expression in Resected Non-small Cell Lung Cancer)

  • 김승준;이정미;김진숙;강지영;이상학;김석찬;이숙영;김치홍;안중현;권순석;김영균;김관형;문화식;송정섭;박성학;문석환;왕영필
    • Tuberculosis and Respiratory Diseases
    • /
    • 제64권3호
    • /
    • pp.200-205
    • /
    • 2008
  • 연구배경: 혈관신생은 종양의 성장과 유지 및 전이에 필수적이며 따라서 종양조직은 혈관신생을 위해 많은 종류의 혈관형성 촉진인자들을 생성하고 있다. VEGF와 bFGF는 혈관신생과 관련되는 물질로 본 연구에서는 폐암환자에서 조직 내 VEGF와 bFGF의 발현에 대해 알아보고자 하였다. 방법: 조직학적으로 샘암종 또는 편평상피세포암종으로 진단받고 완치의 목적으로 수술을 시행 받은 35명의 폐암환자 조직에서 VEGF 및 bFGF의 농도를 ELISA 방법으로 측정하였으며 이에 대한 임상적 양상을 후향적으로 분석하였다. 결과: VEGF 및 bFGF의 농도는 종양조직이 대조조직보다 유의하게 높았으며 T2+T3의 종양조직이 T1의 종양 조직보다 유의하게 VEGF의 농도가 높았다. 림프절 전이가 있었던 경우가 없었던 경우보다 종양조직에서 VEGF의 농도가 증가한 경향을 보였다(p=0.06). 하지만 VEGF 및 bFGF의 농도는 환자의 병기 및 생존율에 통계적으로 유의한 차이를 보이지 않았다. 결론: VEGF 및 bFGF 모두 종양조직에서 증가하였으나 VEGF만이 종양크기, 림프절 전이 등의 임상양상과 연관성을 보여주었다. 하지만 각각의 VEGF 및 bFGF의 종양조직 내 농도는 예후와 관련되지는 않았다.

비만에서의 혈관신생의 역할 (The Role of Angiogenesis in Obesity)

  • 윤미정
    • 생명과학회지
    • /
    • 제24권5호
    • /
    • pp.573-587
    • /
    • 2014
  • 혈관신생은 모든 조직의 성장과 발달, 그리고 상처회복 등에 매우 중요하다. 지방조직은 우리 몸에서 가장 혈관이 발달된 조직으로서 각 지방세포들은 모세혈관에 둘러싸여 있으며 신생혈관들은 지방세포에 영양분과 산소를 공급한다. 혈관의 내피세포들은 파라크린 신호경로, 세포외 성분, 세포들 간의 직접적인 작용을 통해 지방세포와 교류한다. 활성화된 지방세포들은 VEGF, FGF-2, leptin, HGF와 같은 혈관신생인자들을 생성하며, 이들은 단독으로 혹은 협력하여 혈관신생을 증가시키고 지방조직의 성장과 대사를 촉진한다. 따라서 혈관신생 억제제들은 비만과 비만관련 질환을 치료하는데 유용할 것으로 생각된다.

Fluvastatin inhibits advanced glycation end products-induced proliferation, migration, and extracellular matrix accumulation in vascular smooth muscle cells by targeting connective tissue growth factor

  • Hwang, Ae-Rang;Nam, Ju-Ock;Kang, Young Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권2호
    • /
    • pp.193-201
    • /
    • 2018
  • Connective tissue growth factor (CTGF) is a novel fibrotic mediator, which is considered to mediate fibrosis through extracellular matrix (ECM) synthesis in diabetic cardiovascular complications. Statins have significant immunomodulatory effects and reduce vascular injury. We therefore examined whether fluvastatin has anti-fibrotic effects in vascular smooth muscle cells (VSMCs) and elucidated its putative transduction signals. We show that advanced glycation end products (AGEs) stimulated CTGF mRNA and protein expression in a time-dependent manner. AGE-induced CTGF expression was mediated via ERK1/2, JNK, and Egr-1 pathways, but not p38; consequently, cell proliferation and migration and ECM accumulation were regulated by CTGF signaling pathway. AGE-stimulated VSMC proliferation, migration, and ECM accumulation were blocked by fluvastatin. However, the inhibitory effect of fluvastatin was restored by administration of CTGF recombinant protein. AGE-induced VSMC proliferation was dependent on cell cycle arrest, thereby increasing G1/G0 phase. Fluvastatin repressed cell cycle regulatory genes cyclin D1 and Cdk4 and augmented cyclin-dependent kinase inhibitors p27 and p21 in AGE-induced VSMCs. Taken together, fluvastatin suppressed AGE-induced VSMC proliferation, migration, and ECM accumulation by targeting CTGF signaling mechanism. These findings might be evidence for CTGF as a potential therapeutic target in diabetic vasculature complication.

구강점막의 배양에 관한 연구 (A METHOD OF MUCOSA CULTURE)

  • 최병호;유재하
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제17권4호
    • /
    • pp.331-336
    • /
    • 1995
  • To use cultured mucosa as a graft of full thickness, our laboratory has been involved in the development of techniques to grow epidermis together with connective tissue. Human oral mucosa was obtained at dental surgery. Under sterile conditions the tissues were cut into explants of 0.1 $cm^2$ which were placed in the center of 24 well tissue culture dishes and incubated in a growth medium. The growth medium used for epithelial was MEM(Minimum Essential Medium) supplemented with 10% fetal calf serum, 0.5% dimethyl sulfoxide, glutamine (0.292 g/l), epidermal growth factor (40 ug/ml), cholera toxin (30 ng/ml), hydrocortisone (2 ug/ml), insulin (40 ug/ml) and transferin (5 ug/ml). The medium for stratification of epithelial cells was MEM supplemented with 10% fetal calf serum, 0.5% dimethyl sulfoxide and glutamine (0.292 g/l). The medium used for fibroblasts was MEM supplemented with 10% fetal calf serum. With the three types of media used alternatively, a mucosa composed of epidermis and connective tissue was obtained after 3 weeks of culture.

  • PDF

Intraovarian vascular enhancement via stromal injection of platelet-derived growth factors: Exploring subsequent oocyte chromosomal status and in vitro fertilization outcomes

  • Wood, Samuel H.;Sills, E. Scott
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제47권2호
    • /
    • pp.94-100
    • /
    • 2020
  • The inverse correlation between maternal age and pregnancy rate represents a major challenge for reproductive endocrinology. The high embryo ploidy error rate in failed in vitro fertilization (IVF) cycles reflects genetic misfires accumulated by older oocytes over time. Despite the application of different follicular recruitment protocols during IVF, gonadotropin modifications are generally futile in addressing such damage. Even when additional oocytes are retrieved, quality is frequently poor. Older oocytes with serious cytoplasmic and/or chromosomal errors are often harvested from poorly perfused follicles, and ovarian vascularity and follicular oxygenation impact embryonic chromosomal competency. Because stimulation regimens exert their effects briefly and immediately before ovulation, gonadotropins alone are an ineffective antidote to long-term hypoxic pathology. In contrast, the tissue repair properties (and particularly the angiogenic effects) of platelet-rich plasma (PRP) are well known, with applications in other clinical contexts. Injection of conventional PRP and/or its components (e.g., isolated platelet-derived growth factors as a cell-free substrate) into ovarian tissue prior to IVF has been reported to improve reproductive outcomes. Any derivative neovascularity may modulate oocyte competence by increasing cellular oxygenation and/or lowering concentrations of intraovarian reactive oxygen species. We propose a mechanism to support intrastromal angiogenesis, improved follicular perfusion, and, crucially, embryo ploidy rescue. This last effect may be explained by mRNA upregulation coordinated by PRP-associated molecular signaling, as in other tissue systems. Additionally, we outline an intraovarian injection technique for platelet-derived growth factors and present this method to help minimize reliance on donor oocytes and conventional hormone replacement therapy.

초음파가 창상조직내 표피성장인자의 발현에 미치는 영향 (The Effect of Ultrasound on Epidermal Growth Factor Expression in Rat Wound Tissue)

  • 남기원;구현모;김석범;이선민;김진상
    • The Journal of Korean Physical Therapy
    • /
    • 제14권2호
    • /
    • pp.107-115
    • /
    • 2002
  • This study was performed to investigate the effect of ultrasound irradiation on epidermal growth factor(EGF) expression in rat wound tissue. Skin wounds were created below 5mm to both sides of scapular inferior angle. The right wound was used experimental side and left was used control side. Ultrasound was irradiated pulse rate $20\%$, frequency 1MHz, intensity $0.5W/cm^2$ for 5 minutes during 3days. After sonication during 3 days, rats were sacrified. The expression of epidermal growth factor evaluated immunohistochemistry on mouse anti-EGF. In the control side, a little expression of EGF was observed at epidermis and dermis. In the experimental side, A strong immunostaining was seen at epidermis and dermis. This study suggests that ultrasound irradiation is effective on EGF expression in wound tissue.

  • PDF

Maintenance of Proliferation and Adipogenic Differentiation by Fibroblast Growth Factor-2 and Dexamethasone Through Expression of Hepatocyte Growth Factor in Bone Marrow-derived Mesenchymal Stem Cells

  • Oh, Ji-Eun;Eom, Young Woo
    • 대한의생명과학회지
    • /
    • 제22권1호
    • /
    • pp.1-8
    • /
    • 2016
  • Several studies have investigated the various effects of dexamethasone (Dex) on the proliferation and differentiation of mesenchymal stem cells (MSCs). Previously, we reported that co-treatment with L-ascorbic acid 2-phosphate and fibroblast growth factor (FGF)-2 maintained differentiation potential in MSCs through expression of hepatocyte growth factor (HGF). In this study, we investigated the effects of co-treatment with FGF-2 and Dex on the proliferation and differentiation potential of MSCs during a 2-month culture period. Co-treatment with FGF-2 and Dex increased approximately a 4.7-fold higher accumulation rate of MSC numbers than that by FGF-2 single treatment during a 2-month culture period. Interestingly, co-treatment with FGF-2 and Dex increased expression of HGF and maintained adipogenic differentiation potential during this culture period. These results suggest that co-treatment with FGF-2 and Dex preserves the proliferation and differentiation potential during long-term culture.

Growth and nutrient bioextraction of Gracilaria chorda, G. vermiculophylla, Ulva prolifera, and U. compressa under hypo- and hyper-osmotic conditions

  • Wu, Hailong;Shin, Sook Kyung;Jang, Sojin;Yarish, Charles;Kim, JangKyun
    • ALGAE
    • /
    • 제33권4호
    • /
    • pp.329-340
    • /
    • 2018
  • The present study was to determine the effects of salinity on the growth and nutrient bioextraction abilities of Gracilaria and Ulva species, and to determine if these seaweeds can be used for nutrient bioextraction under hypo- and / or hyperosmotic conditions. Two Gracilaria species, G. chorda and G. vermiculophylla, and two Ulva species, U. prolifera and U. compressa, were cultured at various salinity conditions (5, 10, 15, 20, 30, 40, and 50 psu) for 3 weeks. Results showed that the growth rates, nutrient uptake, tissue nutrient contents and nutrient removal were significantly affected by salinity and species. All four species were euryhaline with the highest growth rates at 20 psu. Among the four species, U. prolifera, U. compressa, and G. vermiculophylla showed potential to be used for nutrient bioextraction in estuaries and / or land-based fish farms due to their rapid growth, high nutrient uptake, high tissue carbon and nitrogen accumulation and removal capacities.

Compensatory growth under leaf damage of herbal vine Aristolochia contorta depends on the light availability

  • Si-Hyun Park;Bo Eun Nam;Jae Geun Kim
    • Journal of Ecology and Environment
    • /
    • 제48권3호
    • /
    • pp.374-381
    • /
    • 2024
  • Background: There is a wide range of phenotypic plasticity in plants that respond to tissue damage. Compensatory growth after physical damage may function as a part of tolerance to herbivory, which is affected by resource limitations and/or damage properties. Results: Under different light availability (unshaded and shaded) and damaged leaf ontogeny (control, young leaf- and mature leaf-damaged), compensatory growth was examined for the herbal vine Aristolochia contorta. Under the unshaded treatment, compensatory growth on leaf and branch emergence was strongly induced compared to the shaded treatment. Damage to young leaves induced leaf emergence more strongly than damage to old leaves. Conclusions: It appears that light availability acted as a limiting factor in the compensatory growth of A. contorta after the damage despite its vigorous growth under the shade treatment. Under the shade, leaf damage led to altered biomass allocation as indicated by a decrease in specific leaf area and an increase in root mass fraction. The present study contributes to the understanding of the phenotypic plasticity of vine species under different environmental conditions and damaged tissue, which may differ depending on the species' habitat range.

Fibrous composite matrix of chitosan/PLGA for tissue regeneration

  • Shim, In-Kyong;Hwang, Jung-Hyo;Lee, Sang-Young;Cho, Hyun-Chul;Lee, Myung-Chul;Lee, Seung-Jin
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.237.3-238
    • /
    • 2003
  • Tissue engineering may be adequately defined as the science of persuading the body to regenerate or repair tissue that fail to regenerate or heal spontaneously. In the various techniques of cartilage tissue engineering, the use of 3-dimensional polymeric scaffolds implanted at a tissue defect site is usually involved. These scaffolds provided a framework for cells to attach, proliferate, and form extracellular matrix(ECM). The scaffolds may also serve as carriers for cells and/or growth factors. In the ideal case, scaffold absorb at a predefined rate so that the 3-dimensional space occupied by the initial scaffold is replaced by regenerated host tissue. (omitted)

  • PDF