• 제목/요약/키워드: Tissue dose depth

검색결과 92건 처리시간 0.031초

방사선 치료용 고에너지 전자선의 조직 내 선량분포 특성에 관한 연구 (Study on Characteristics of Dose Distribution in Tissue of High Energy Electron Beam for Radiation Therapy)

  • 나수경
    • 대한방사선치료학회지
    • /
    • 제14권1호
    • /
    • pp.175-186
    • /
    • 2002
  • The purpose of this study is directly measure and evaluate about absorbed dose change according to nominal energy and electron cone or medical accelerator on isodose curve, percentage depth dose, contaminated X-ray, inhomogeneous tissue, oblique surface and irradiation on intracavitary that electron beam with high energy distributed in tissue, and it settled standard data of hish energy electron beam treatment, and offer to exactly data for new dote distribution modeling study based on experimental resuls and theory. Electron beam with hish energy of $6{\sim}20$ MeV is used that generated from medical linear accelerator (Clinac 2100C/D, Varian) for the experiment, andwater phantom and Farmer chamber md Markus chamber und for absorbe d dose measurement of electron beam, and standard absorbed dose is calculated by standard measurements of International Atomic Energy Agency(IAEA) TRS 277. Dose analyzer (700i dose distribution analyzer, Wellhofer), film (X-OmatV, Kodak), external cone, intracavitary cone, cork, animal compact bone and air were used for don distribution measurement. As the results of absorbed dose ratio increased while irradiation field was increased, it appeared maximum at some irradiation field size and decreased though irradiation field size was more increased, and it decreased greatly while energy of electron beam was increased, and scattered dose on wall of electron cone was the cause. In percentage depth dose curve of electron beam, Effective depth dose(R80) for nominal energy of 6, 9, 12, 16 and 20 MeV are 1.85, 2.93, 4.07, 5.37 and 6.53 cm respectively, which seems to be one third of electron beam energy (MeV). Contaminated X-ray was generated from interaction between electron beam with high energy and material, and it was about $0.3{\sim}2.3\%$ of maximum dose and increased with increasing energy. Change of depth dose ratio of electron beam was compared with theory by Monte Carlo simulation, and calculation and measured value by Pencil beam model reciprocally, and percentage depth dose and measured value by Pencil beam were agreed almost, however, there were a little lack on build up area and error increased in pendulum and multi treatment since there was no contaminated X-ray part. Percentage depth dose calculated by Monte Carlo simulation appeared to be less from all part except maximum dose area from the curve. The change of percentage depth dose by inhomogeneous tissue, maximum range after penetration the 1 cm bone was moved 1 cm toward to surface then polystyrene phantom. In case of 1 cm and 2 cm cork, it was moved 0.5 cm and 1 cm toward to depth, respectively. In case of air, practical range was extended toward depth without energy loss. Irradiation on intracavitary is using straight and beveled type cones of 2.5, 3.0, 3.5 $cm{\phi}$, and maximum and effective $80\%$ dose depth increases while electron beam energy and size of electron cone increase. In case of contaminated X-ray, as the energy increase, straight type cones were more highly appeared then beveled type. The output factor of intracavitary small field electron cone was $15{\sim}86\%$ of standard external electron cone($15{\times}15cm^2$) and straight type was slightly higher then beveled type.

  • PDF

4MV X-선을 이용한 조직보상체 두께비 연구 및 응용 (A study on tissue compensator thickness ratio and an application for 4MV X-rays)

  • 김영범;정희영;권영호;김유현
    • 대한방사선치료학회지
    • /
    • 제8권1호
    • /
    • pp.55-61
    • /
    • 1996
  • A radiation beam incident on irregular or sloping surface produces an inhomogeneity of absorbed dose. The use of a tissue compensator can partially correct this dose inhomogeneity. The tissue compensator should be made based on experimentally measured thickness ratio. The thickness ratio depends on beam energy, distance from the tissue compensator to the surface of patient, field size, treatment depth, tissue deficit and other factors. In this study, the thickness ratio was measured for various field size of $5cm{\times}5cm,\;10cm{\times}10cm,\;15cm{\times}15cm,\;20cm{\times}20cm$ for 4MV X-ray beams. The distance to the compensator from the X-ray target was fixed, 49cm, and measurement depth was 3, 5, 7, 9 cm. For each measurement depth, the tissue deficit was changed from 0 to(measurement depth-1)cm by 1cm increment. As a result, thickness ratio was decreased according to field size and tissue deficit was increased. Use of a representative thickness ratio for tissue compensator, there was $10\%$ difference of absorbed dose but use of a experimentally measured thickness ratio for tissue compensator, there was $2\%$ difference of absorbed dose. Therefore, it can be concluded that the tissue compensator made by experimentally measured thickness ratio can produce good distribution with acceptable inhomogeneity and such tissue compensator can be effectively applied to clinical radiotherapy.

  • PDF

Dose Volume Histogram Analysis for Comparison of Usability of Linear Accelerator Flattening Filter

  • Ji, Yun-Sang;Dong, Kyung-Rae;Ryu, Jae-Kwang;Choi, Ji-Won;Kim, Mi-Hyun
    • 방사선산업학회지
    • /
    • 제12권4호
    • /
    • pp.297-302
    • /
    • 2018
  • The wedge filter has two movements, fixed and dynamic. In this study, the depth dose distribution was analyzed to determine the stability of the dose distribution and dose volume histograms obtained by evaluating the usability of the critical normal tissue dose around the tumor dose. The depth dose was analyzed from the dose distribution from a Linac (6 MV and 10 MV irradiation field of energy $20{\times}20cm^2$, wedge filter with a SSD of 100 cm and $15^{\circ}$, $30^{\circ}$, $45^{\circ}$ Y1-in (Left -7 cm), Y2-out(Right +7 cm). To analyze the fluctuations of the depth dose, a fixed wedge and dynamic wedge toe portion was examined according to the energy and angle because the size of the fluctuations was included in the error bound and did not show significant differences. The neck, breast, and pelvic dosimetry in tumor tissue are measured more commonly with a dynamic wedge than a fixed wedge presumably due to the error range. On the other hand, dosimetry of the surrounding normal tissue is more common using a fixed wedge than with a dynamic wedge.

근접조사 치료에 사용되는 $^{60}$ Co source의 조직내에서 선량분포 (Dose Distribution of $^{60}$ Co Source as Brachytherapy in Tissue)

  • 유명진
    • 한국의학물리학회지:의학물리
    • /
    • 제1권1호
    • /
    • pp.85-90
    • /
    • 1990
  • Berger formulation was used to calculate the dose distribution of $^{60}$ Co source in tissue. $^{60}$ Co source was supposed as point source. The effect of the stainless-steel around the source was considered and Taylor Approximation Method was used for calculating exposure build-up factor. Calculated depth dose data was compared with measured data which was measured by the ionization chamber.

  • PDF

6MV X-선에 대한 삼차원적 조직보상체의 연구 (A Study of Three-dimension Tissue Equivalent Compensator for 6MV X-Rays)

  • 김옥배;최태진;서수지
    • Radiation Oncology Journal
    • /
    • 제7권1호
    • /
    • pp.133-140
    • /
    • 1989
  • Three-dimension paraffin compensator was designed to construct the tissue equivalent compensator for irregular body contours and obiliques beam incidence. The ratio of compensator thickness to tissue deficit was depended on field size, depth and air gap because the scattered dose loss. The ratio of compensator-tissue was optimized 0.79, 0.73, 0.61 and 0.56 in 6MV x-rays as function of field size $4{\times}4$, $10{\times}10$, $20{\times}20$ and $30{\times}30cm^2$ respectively. in our study. Using this tissue equivalent compensator, it can be got 2% difference of dose at same mid-plane in phantom study.

  • PDF

Stereotactic Radiosurgery를 위한 소형 조사면의 선량측정 (Treatment Planning and Dosimetry of Small Radiation Fields for Stereotactic Radiosurgery)

  • 추성실;서창옥;노준규;정상섭
    • Radiation Oncology Journal
    • /
    • 제7권1호
    • /
    • pp.101-112
    • /
    • 1989
  • The treatment planning and dosimetry of small fields for stereotactic radiosurgery with 10 MV x-ray isocentrically mounted linear accelerator is presented. Special consideration in this study was given to the variation of absorbed dose with field size, the central axis percent depth doses and the combined moving beam dose distribution. The collimator scatter correction factors of small fields $(1\times1\~3\times3cm^2)$ were measured with ion chamber at a target chamber distance of 300cm where the projected fields were larger than the polystyrene buildup caps and it was calibrated with the tissue equivalent solid state detectors of small size (TLD, PLD, ESR and semiconductors). The central axis percent depth doses for $1\timesl\;and\;3\times3cm^2$ fields could be derived with the same acuracy by interpolating between measured values for larger fields and calculated zero area data, and it was also calibrated with semiconductor detectors. The agreement between experimental and calculated data was found to be under $2\%$ within the fields. The three dimensional dose planning of stereotactic focusing irradiation on small size tumor regions was performed with dose planning computer system (Therac 2300) and was verified with film dosimetry. The more the number of strips and the wider the angle of arc rotation, the larger were the dose delivered on tumor and the less the dose to surrounding the normal tissues. The circular cone, we designed, improves the alignment, minimizes the penumbra of the beam and formats ball shape of treatment area without stellate patterns. These dosimetric techniques can provide adequate physics background for stereotactic radiosurgery with small radiation fields and 10MV x-ray beam.

  • PDF

Comparative Study of the Effective Dose from Panoramic Radiography in Dentistry Measured Using a Radiophotoluminescent Glass Dosimeter and an Optically Stimulated Luminescence Detector

  • Lee, Kyeong Hee;Kim, Myeong Seong;Kweon, Dae Cheol;Choi, Jiwon
    • Journal of the Korean Physical Society
    • /
    • 제73권9호
    • /
    • pp.1377-1384
    • /
    • 2018
  • Accurate measurement of the absorbed dose and the effective dose is required in dental panoramic radiography involving relatively low energy with a rotational X-ray tube system using long exposures. To determine the effectiveness of measuring the irradiation by using passive dosimetry, we compared the entrance skin doses by using a radiophotoluminescent glass dosimeter (RPL) and an optically stimulated luminescence detector (OSL) in a phantom model consisting of nine and 31 transverse sections. The parameters of the panoramic device were set to 80 kV, 4 mA, and 12 s in the standard program mode. The X-ray spectrum was applied in the same manner as the panoramic dose by using the SpekCalc Software. The results indicated a mass attenuation coefficient of $0.008226cm^2/g$, and an effective energy of 34 keV. The equivalent dose between the RPL and the OSL was calculated based on a product of the absorbed doses. The density of the aluminum attenuators was $2.699g/cm^3$. During the panoramic examination, tissue absorption doses with regard to the RPL were a surface dose of $75.33{\mu}Gy$ and a depth dose of $71.77{\mu}Gy$, those with regard to the OSL were surface dose of $9.2{\mu}Gy$ a depth dose of $70.39{\mu}Gy$ and a mean dose of $74.79{\mu}Gy$. The effective dose based on the International Commission on Radiological Protection Publication 103 tissue weighting factor for the RPL were $0.742{\mu}Sv$, $8.9{\mu}Sv$, $2.96{\mu}Sv$ and those for the OSL were $0.754{\mu}Sv$, $9.05{\mu}Sv$, and $3.018{\mu}Sv$ in the parotid and sublingual glands, orbit, and thyroid gland, respectively. The RPL was more effective than the OSL for measuring the absorbed radiation dose in low-energy systems with a rotational X-ray tube.

임상적용을 위한 전자선의 선량분포 특성에 대한 고찰 (A Consideration on the Characteristics of Electron Beam Dose Distributions for Clinical Applications)

  • 차동수
    • 대한디지털의료영상학회논문지
    • /
    • 제12권1호
    • /
    • pp.65-69
    • /
    • 2010
  • High energy electron beams were to concentrically dose inside a tumor and more energy is a shape decreased of dose. Therefore, it is useful to radiation therapy of a tumor. Also high energy electron beams ionized into collision with a atom in structure material of tissue and it has big changes to dose distribution by multiple scattering. The study had to establish characteristic of electron beams from interaction of electron beams and materials. Experiment method was to measure dependence of electron beam central axis for depth dose curve, field flatness and symmetry and field size dependence. The results were able to evaluate data for a datum pint of electron beam. Also radiotherapy has to be considered for not only energy pencil of lines but characteristic, electron guide and isodose curves distribution.

  • PDF

Measurement of Depth Dose Distribution Using Plastic Scintillator

  • Hashimoto, Masatoshi;Kodama, Kiyoyuki;Hanada, Takashi;Ide, Tatsuya;Tsukahara, Tomoko;Maruyama, Koichi
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.244-247
    • /
    • 2002
  • We examined a possibility to use inorganic plastic scintillator, which has the effective atomic number close to that of human soft tissue, for the measurement of dose distributions in a shorter time period. The method was to irradiate a block of plastic scintillator as a phantom, and to measure the distribution of the scintillation light by a wave length analyzer through a thread of plastic optical fiber. By irradiating the diagnostic x-ray, we observed the emission spectrum of the scintillation light from the scintillator. It showed a peak at around 420nm with a full width of 140 nm. The emission spectrum was integrated to determine the total number of photons. The dependences of the amount of photons on the irradiated dose were measured. The results of the experiment show that the amount of emission light is in proportional to the irradiated dose. From this fact, we conclude that the present method can be used for the measurement of the depth dose distribution of the diagnostic x-rays.

  • PDF

6MV X-선에 의한 폐조직의 심부선량변화와 임상응용 (Dose Calculation of Heterogeneous Lung Tissue on 6MV X-ray Therapy)

  • 이경자;장승희;추성실
    • 한국의학물리학회지:의학물리
    • /
    • 제9권4호
    • /
    • pp.247-257
    • /
    • 1998
  • 방사선치료에서 악성종양과 주위건강조직에 대한 정확한 선량분포를 파악하기 위하여는 신체내 불균질 조직에 의한 선량변화의 측정이 중요하며 그중에서도 밀도가 낮고 체적이 비교적 큰 폐조직에 대한 선량분포의 변화는 방사선 치료에서 간과할 수 없는 중요한 요인의 하나이다. 저자들은 6메가볼트의 엑스선으로 흉곽내에 위치한 종양에 정확한 선량을 투여하기 위하여 조직등가팬텀을 제작하고 열형광 선량계와 필름선량측정 방법으로 흉곽내의 방사선 분포변화를 실측 하였으며 컴퓨터화하기 위한 수학적 실험식올 유도하고 이를 이론식과 비교 검토한 결과 거의 일치함을 보였다. 실험을 통하여 일문조사면 또는 다문조사면에서 폐조직은 연조직에 비하여 1cm 당 약4%의 선량 증가를 보였으며 식도부위의 회전조사에서는 균질 연조직의 등량곡선보다 15% 미만의 선량 격차가 나타났고 폐부위의 회전조사에서는 회전각도에 따라 20% 내외의 큰오차를 나타내었다. 폐암등 흉부내 종양치료에서는 폐조직 밀도에 의한 방사선 투과 및 산란으로 선량과 선량분포의 오차가 5%-20%에 이르므로 반드시 선량을 보상하여야 하며 선량분포도를 작성 평가함으로서 방사선 임상치료에 큰효과를 얻을 수 있었다.

  • PDF