A Study on the Expression of Connexin 43 in the Experimental Tooth Movement of Rat (백서의 실험적 치아이동시 connexin 43의 발현에 관한 연구)
-
- The korean journal of orthodontics
- /
- v.31 no.5 s.88
- /
- pp.525-534
- /
- 2001
Bone remodeling in response to force requires coordinated actions of osteoblasts, osteoclasts, osteocytes, and periodontal ligament cells. Coordination among these cells may be mediated, in part, by cell-to-cell communication via gap junctions. This study was designed to evaluate the expression of gap junction, connection 43 In periodontal tissue during the experimental movement of rat's incisors, by LSAB(labelled streptavidine biotin) immunohistochemical staining for connexin 43. Twenty seven Sprague-Dawley rats were divided into a control group(3 rats), and 6 experimental groups(24 rats) where 75g of force was applied from helical springs across the maxillary incisors. Rats of experimental groups were sacrificed at 12 hours, 1, 4, 7, 14 and 28 days after force application, respectively. And the tissues of a control group and experimental groups were studied immunohistochemically. The results were as follows : 1. In control group, the expression of connexin 43 was rare in gingiva, dentin, cementum, periodontal ligament, and bone cells. 2. In experimental group, the expression of connexin 43 was increased in pulp, periodontal ligament, osteoblasts, and osteoclasts, comparing to that in control. And it was rare in gingiva, dentin, and odontoblasts regardless of the duration of force application, which was not different from that of control group. 3. The expression of connexin 43 in pulp of experimental group began to increase in 4-day after force application and got to the highest degree at 7-day. And it decreased after 14-day to be similar to that of control group at 28-day. 4. The expression of connexin 43 in periodontal ligament was noted in small capillaries adjacent to alveolar bone, showing higher intensity of immunolabelling after 4-day And it was stronger in the pressure side than in tension side of periodontal ligament. After 7-day, decrease in connexin 43 expression was observed. 5. The expression of connexin 43 in alveolar bone began to increase 1-day, reached to the highest degree at 4-day, and decreased at 7-day. And the expression in osteoclasts was more than that in osteoblasts or osteocyte at 7-day.
To investigate the alteration of transferrin receptor (TfR) in the proliferating or transformed liver cells,
Background : Severe acute lung injury(ALI), also known as the adult respiratory distress syndrome(ARDS), is a heterogenous nature of dynamic and explosive clinical synrome that exacts a mortality of approximately 50%. Endotoxin(ETX) is an abundant component of the outer membrane of gram-negative bacteria capable of inducing severe lung injury in gram-negative sepsis and gram-negative bacterial pneumonia, which are among the most common predisposing causes of ARDS. The influx of PMNs into airway tissue is a pathological hallmark of LPS-induced lung injury. And there is a substantial evidence suggesting that cytokines are important mediators of lung injury in gram-negative sepsis. However, the kinetics of phagocytes and cytokines by an exact time sequence and their respective pathogenic importance remain to be elucidated. This study was performed to investigate the role of phagocytes and proinflammatory cytokines in ETX-induced ALI through a time course of changes in the concentration of protein,
This experiment was carried out to elucidate the effects of the thyroid function on lactation in female rats. One hundred and five female rats, whose body weight was approximately 250g with normal parturition, were divided into 3.5 THY, 35 PTU, and 35 CON. The
It has been known for a long time that gonadotropins and steroid hormones play a pivotal role in a series of reproductive biological phenomena including the maturation of ovarian follicles and oocytes, ovulation and implantation, maintenance of pregnancy and fetal growth & development, parturition and mammary development and lactation. Recent investigations, however, have elucidated that in addition to these classic hormones, multiple growth factors also are involved in these phenomena. Most growth factors in reproductive organs mediate the actions of gonadotropins and steroid hormones or synergize with them in an autocrine/paracrine manner. The insulin-like growth factor(IGF) system, which is one of the most actively investigated areas lately in the reproductive organs, has been found to have important roles in a wide gamut of reproductive phenomena. In the present communication, published literature pertaining to the intrauterine IGF system will be reviewed preceded by general information of the IGF system. The IGF family comprises of IGF-I & IGF-II ligands, two types of IGF receptors and six classes of IGF-binding proteins(IGFBPs) that are known to date. IGF-I and IGF-II peptides, which are structurally homologous to proinsulin, possess the insulin-like activity including the stimulatory effect of glucose and amino acid transport. Besides, IGFs as mitogens stimulate cell division, and also play a role in cellular differentiation and functions in a variety of cell lines. IGFs are expressed mainly in the liver and messenchymal cells, and act on almost all types of tissues in an autocrine/paracrine as well as endocrine mode. There are two types of IGF receptors. Type I IGF receptors, which are tyrosine kinase receptors having high-affinity for IGF-I and IGF-II, mediate almost all the IGF actions that are described above. Type II IGF receptors or IGF-II/mannose-6-phosphate receptors have two distinct binding sites; the IGF-II binding site exhibits a high affinity only for IGF-II. The principal role of the type II IGF receptor is to destroy IGF-II by targeting the ligand to the lysosome. IGFs in biological fluids are mostly bound to IGFBP. IGFBPs, in general, are IGF storage/carrier proteins or modulators of IGF actions; however, as for distinct roles for individual IGFBPs, only limited information is available. IGFBPs inhibit IGF actions under most in vitro situations, seemingly because affinities of IGFBPs for IGFs are greater than those of IGF receptors. How IGF is released from IGFBP to reach IGF receptors is not known; however, various IGFBP protease activities that are present in blood and interstitial fluids are believed to play an important role in the process of IGF release from the IGFBP. According to latest reports, there is evidence that under certain in vitro circumstances, IGFBP-1, -3, -5 have their own biological activities independent of the IGF. This may add another dimension of complexity of the already complicated IGF system. Messenger ribonucleic acids and proteins of the IGF family members are expressed in the uterine tissue and conceptus of the primates, rodents and farm animals to play important roles in growth and development of the uterus and fetus. Expression of the uterine IGF system is regulated by gonadal hormones and local regulatory substances with temporal and spatial specificities. Locally expressed IGFs and IGFBPs act on the uterine tissue in an autocrine/paracrine manner, or are secreted into the uterine lumen to participate in conceptus growth and development. Conceptus also expresses the IGF system beginning from the peri-implantation period. When an IGF family member is expressed in the conceptus, however, is determined by the presence or absence of maternally inherited mRNAs, genetic programming of the conceptus itself and an interaction with the maternal tissue. The site of IGF action also follows temporal (physiological status) and spatial specificities. These facts that expression of the IGF system is temporally and spatially regulated support indirectly a hypothesis that IGFs play a role in conceptus growth and development. Uterine and conceptus-derived IGFs stimulate cell division and differentiation, glucose and amino acid transport, general protein synthesis and the biosynthesis of mammotropic hormones including placental lactogen and prolactin, and also play a role in steroidogenesis. The suggested role for IGFs in conceptus growth and development has been proven by the result of IGF-I, IGF-II or IGF receptor gene disruption(targeting) of murine embryos by the homologous recombination technique. Mice carrying a null mutation for IGF-I and/or IGF-II or type I IGF receptor undergo delayed prenatal and postnatal growth and development with 30-60% normal weights at birth. Moreover, mice lacking the type I IGF receptor or IGF-I plus IGF-II die soon after birth. Intrauterine IGFBPs generally are believed to sequester IGF ligands within the uterus or to play a role of negative regulators of IGF actions by inhibiting IGF binding to cognate receptors. However, when it is taken into account that IGFBP-1 is expressed and secreted in primate uteri in amounts assessedly far exceeding those of local IGFs and that IGFBP-1 is one of the major secretory proteins of the primate decidua, the possibility that this IGFBP may have its own biological activity independent of IGF cannot be excluded. Evidently, elucidating the exact role of each IGFBP is an essential step into understanding the whole IGF system. As such, further research in this area is awaited with a lot of anticipation and attention.
We investigated the vascular characteristics of tumors and normal tissue using perfusion CT in the rabbit brain tumor model. The VX2 carcinoma concentration of
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
The author intended to investigate external and internal changes in the cone structure, changes in water content, sugar, fat and protein during the period of seed maturation which bears a proper germinability. The experimental results can be summarized as in the following. 1. Male flowers 1) Pollen-mother cells occur as a mass from late in April to early in May, and form pollen tetrads through meiosis early and middle of May. Pollen with simple nucleus reach maturity late in May. 2) Stamen number of a male flower is almost same as the scale number of cone and is 69-102 stamens. One stamen includes 5800-7300 pollen. 3) The shape is round and elliptical, both of a pollen has air-sac with
Objective: Periodontal ligament fibroblasts have an ectomesenchymal origin and are thought to play a crucial role for not only homeostasis of periodontal tissues but also bone remodeling, wound healing and regeneration of tissues. Recently, it has been reported that UNC-50 is not expressed in gingival fibroblasts but in PDL fibroblasts. The purpose of this study was to examine the expression of UNC-50 and osteocalcin in the periodontium after application of intermittent force. Methods: Twelve rats had 40 grams of mesially-directed force applied at the upper molar for 1 hour/day. Four rats were sacrificed at 1, 3 and 5 days. Immunohistochemical localization of UNC-50 and osteocalcin antibody was carried out. The results showed apposition of new cellular cementum and a slight increase in periodontal space at the tension side. Results: Strong UNC-50 expression was observed in the differentiating cementoblasts close to PDL fibroblasts in the tension side whereas it was barely expressed at the compression side. Expression was strong at day 3, and decreased at day 5. Osteocalcin immunoreactivity expression was strong in differentiating cementoblasts at the tension side. Conclusion: It can be suggested that UNC-50 is related to the differentiation of cementoblasts, and may be responsible for the molecular event in PDL cells under mechanical stress.