• Title/Summary/Keyword: Tissue attenuation

Search Result 148, Processing Time 0.023 seconds

A Study on the Phase Correction of ultratrasound transfer function (초음파 전달함수의 위상보정을 위한 연구)

  • Min, Yong-Ki;Lee, Kang-Ho;Choi, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.713-716
    • /
    • 1988
  • To characterize the bioloical tissues, the new methods to measure the frequency dependent attenuation are presented in this paper. In general, ultrasonic phase information was assumed by linear function of the frequency. But the minimum phase function which characterizes the frequency dispersion of tissue was derived in (2). It is very significant to measure the attenuation by using the minimum phase function to characterize the frequence dispersion of tissue. Also, we propose the phase correcting technique to take advantage of the idea that the distortion of amplitude component when the wave propagates through media.

  • PDF

Bronchus-Associated Lymphoid Tissue (BALT) Lymphoma of the Lung Showing Mosaic Pattern of Inhomogeneous Attenuation on Thin-section CT: A Case Report

  • In-Jae Lee;Sung Hwan Kim;Soo Hyun Koo;Hyun Beom Kim;Dae Hyun Hwang;Kwan Seop Lee;Yul Lee;Kee Taek Jang;Duck-Hwan Kim
    • Korean Journal of Radiology
    • /
    • v.1 no.3
    • /
    • pp.159-161
    • /
    • 2000
  • The authors present a case of histologically proven bronchus-associated lymphoid tissue (BALT) lymphoma of the lung in a patient with primary Sjögren's syndrome that manifested on thin-section CT scan as a mosaic pattern of inhomogeneous attenuation due to mixed small airway and infiltrative abnormalities

  • PDF

Time-domain Estimation Algorithm for Ultrasonic Attenuation using Narrow-filtered Signals (협대역 초음파 신호를 이용한 시간 영역에서의 감쇠 지수 예측)

  • Shim, Jaeyoon;Hur, Don;Kim, Hyungsuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1887-1893
    • /
    • 2016
  • The VSA(Video Signal Analysis) method is the time-domain approach for estimating ultrasonic attenuation which utilizes the envelop signals from backscattered rf signals. The echogenicity of backscattered ultrasonic signals, however, from deeper depths are distorted when the broadband transmit pulse is used and it degrades the estimation accuracy of attenuation coefficients. We propose the modified VSA method using adaptive bandpass filters according to the centroid shift of echo signals as a pulse propagates. The technique of dual-reference diffraction compensation is also proposed to minimize the estimation errors because the difference of attenuation properties between the reference and sample aggravates the estimation accuracy when the differences are accumulated in deeper depth. The proposed techniques minimize the distortion of relative echogenicity and maximize the signal-to-noise ratio at the given depth. Simulation results for numerical tissue-mimicking phantoms show that the Rectangular-shaped filter with the appropriate center frequency exhibits the best estimation performance and the technique of the dual-reference diffraction compensation dramatically improves accuracy for the region after the beam focus.

A Fat-Tissue Mimic Phantom for Therapeutic Ultrasound

  • Kim, Mi Seon;Kim, Ju Young;Jung, Hyun Du;Kim, Jae Young;Choi, Heung Ho
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.3
    • /
    • pp.153-159
    • /
    • 2014
  • As the number of treatments in the therapeutic ultrasound field targeted at fat tissue increase, the performance of the equipment should be evaluated for safety using a fat phantom. In this study, a fat phantom was fabricated using olive oil and a tissue-mimicking material (TMM) phantom. To evaluate the acoustic properties of the TMM phantom according to the changes in the olive oil, the composition ratio of a liquid mixture of olive oil with a surfactant was adjusted from 5-20% in 5% steps. The acoustic properties of the phantom were evaluated using the sound velocity, attenuation coefficient, density, and acoustic impedance. The experimental results showed that the sound velocity decreased with increasing amount of olive oil but the other acoustic properties did not change. In addition, the phantom using an olive-oil mixture with a 15% composition ratio was most similar to the acoustic characteristics of fat tissue with a sound velocity of 1477.35 m/s, an attenuation coefficient of 0.514 dB/MHz-cm, a density of $1.07g/cm^3$, and an acoustic impedance of 1.575 MRayl. These experimental results are expected contribute to the accuracy of the results using a TMM phantom and will be useful for the therapeutic ultrasound field targeted at subcutaneous fat tissue.

Dose Attenuation in the Mid-Cranial Fossa with 6 MV Photon Beam Irradiations (6 MV X-선 조사시 중두개와에서의 선량감쇠)

  • Park, Jeong-Ho;Choi, Tae-Jin;Kim, Ok-Bae
    • Radiation Oncology Journal
    • /
    • v.8 no.1
    • /
    • pp.125-131
    • /
    • 1990
  • In X-ray irradiation, dose distribution depends on multiple parameters, one of them being tissue inhomogeneity to change the dose significantly. considerable dose attenuation through the mid-cranial fossa is expected because of various bony structures in it. Dose distribution around the mid-cranial fossa, following irradiation with 6 MV photon beam, was measured with LiF TLD micro-rod, and compared with the expected dose inthe same sites. In our calculation with $C_f$(correction factor), the expected dose attenuation revealed about $3.74\%$ per 1 cm thickness of bone tissue. And the differences between the expected dose with correction for bone tissue and the measured dose by TLD was small, agreeing within an average variation of $\pm0.21\%$.

  • PDF

Attenuation Estimation of Soft Tissue by the Entropy Method and Statistical Averaging of Speckle Patterns (스펙클 패턴의 통계적 평균과 엔트로피 방식에 의한 초음파 감쇄계수 추정방법)

  • Song, T.K;Park, J.C;Park, S.B
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.253-260
    • /
    • 1989
  • The time domain methods of estimating the attenuation coefficient are generally based on the analysis of statisical properties of the reflected echoes form an attenuating medium. Hence, it is often required to have a large number of data samples in order to obtain a statistically stable estimation result. In the attenuation estimation problem, this means that many different speckle patterns are required in the spatial resolution volume of an attenLlation image. In this paper, by using the fact that the speckle pattern Is sensitive to the point spread function of the ultrasound beam, we suggest a method to generate the statiscally uncorrelated or slightly correlated data samples in a given region by rotating a linear transducer and carrying out lateral scans for all rotating angles. This technique is applied to the entropy method for attenuation estimation proposed recently by the authors where the performance is verified by experiments using a tissue equivalent phantom.

  • PDF

The Study on the Attenuation of X-ray and Imaging Quality by Contents in Stomach (위장내 음식물에 따른 방사선 감약 및 화질에 관한 연구)

  • Dong, Kyung-Rae;Ji, Youn-Sang;Kim, Chang-Bok;Choi, Seong-Kwan;Moon, Sang-In;Dieter, Kevin
    • Journal of radiological science and technology
    • /
    • v.32 no.1
    • /
    • pp.53-60
    • /
    • 2009
  • This study examined the change in the attenuation of X-rays with the ROI (Region of Interest) in DR (Digital Radiography) according to the stomach contents by manufacturing a tissue equivalent material phantom to simulate real stomach tissue based on the assumption that there is some attenuation of X-rays and a difference in imaging quality according to the stomach contents. The transit dosage by the attenuation of X-rays decreased with increasing protein thickness, which altered the average ROI values in the film and DR images. A comparison of the change in average ROI values of the film and DR image showed that the image in film caused larger density changes with varying thickness of protein than the image by DR. The results indicate that NPO (nothing by mouth) is more important in film system than in DR system.

  • PDF

Estimation of Medical Ultrasound Attenuation using Adaptive Bandpass Filters (적응 대역필터를 이용한 의료 초음파 감쇠 예측)

  • Heo, Seo-Weon;Yi, Joon-Hwan;Kim, Hyung-Suk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.5
    • /
    • pp.43-51
    • /
    • 2010
  • Attenuation coefficients of medical ultrasound not only reflect the pathological information of tissues scanned but also provide the quantitative information to compensate the decay of backscattered signals for other medical ultrasound parameters. Based on the frequency-selective attenuation property of human tissues, attenuation estimation methods in spectral domain have difficulties for real-time implementation due to the complexicity while estimation methods in time domain do not achieve the compensation for the diffraction effect effectively. In this paper, we propose the modified VSA method, which compensates the diffraction with reference phantom in time domain, using adaptive bandpass filters with decreasing center frequencies along depths. The adaptive bandpass filtering technique minimizes the distortion of relative echogenicity of wideband transmit pulses and maximizes the signal-to-noise ratio due to the random scattering, especially at deeper depths. Since the filtering center frequencies change according to the accumulated attenuation, the proposed algorithm improves estimation accuracy and precision comparing to the fixed filtering method. Computer simulation and experimental results using tissue-mimicking phantoms demonstrate that the distortion of relative echogenicity is decreased at deeper depths, and the accuracy of attenuation estimation is improved by 5.1% and the standard deviation is decreased by 46.9% for the entire scan depth.

Characteristics of Ultrasonic Propagation of the fruit and Vegetables

  • Lee, Y.H.;Kim, M.S.;Cho, Y.K.;Cho, D.S.l
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.344-353
    • /
    • 1996
  • A fundamental study was conducted to obtain the basic data involved in nondestructive quality evaluation of the fruit and vegetables. An experimental equipment for ultrasonic propagation characteristics of the fruit and vegetables such as radish , carrot , potato, and apple was set up and also power spectrum analysis system of an ultrasonic wave through the fruit and vegetables was set up. The velocity and attenuation of ultrasonic wave through the tissue specimens from the fruit and vegetables were measured and analyzed. The elastic modulus and density by the mechanical method currently used were compared with those using by ultrasonic method. The ultrasonic tranit time was almost linearly increased with the length of the specimens and attenuation of ultrasonic was mainly affected by the internal flbrous structure of the products. The regression equation was derived from the highly correlated experimental variables.

  • PDF

Spectral Computed Tomography: Fundamental Principles and Recent Developments

  • Aaron So;Savvas Nicolaou
    • Korean Journal of Radiology
    • /
    • v.22 no.1
    • /
    • pp.86-96
    • /
    • 2021
  • CT is a diagnostic tool with many clinical applications. The CT voxel intensity is related to the magnitude of X-ray attenuation, which is not unique to a given material. Substances with different chemical compositions can be represented by similar voxel intensities, making the classification of different tissue types challenging. Compared to the conventional single-energy CT, spectral CT is an emerging technology offering superior material differentiation, which is achieved using the energy dependence of X-ray attenuation in any material. A specific form of spectral CT is dual-energy imaging, in which an additional X-ray attenuation measurement is obtained at a second X-ray energy. Dual-energy CT has been implemented in clinical settings with great success. This paper reviews the theoretical basis and practical implementation of spectral/dual-energy CT.