• Title/Summary/Keyword: Tissue and developmental expression

Search Result 212, Processing Time 0.024 seconds

Analysis of Manifestation of CC and CXC Chemokine Genes in Olive Flounders (Paralichthys olivaceus) Artificially Infected with VHSV during the Early Developmental Stage

  • Kim, Kyung-Hee;Kim, Woo-Jin;Park, Choul-Ji;Park, Jong-Won;Noh, Gyeong Eon;Lee, Seunghyung;Lee, Young Mee;Kim, Hyun Chul
    • Development and Reproduction
    • /
    • v.22 no.4
    • /
    • pp.341-350
    • /
    • 2018
  • Chemokines is a small protein that plays a major role in inflammatory reactions and viral infections as a chemotactic factor of cytokines involved in innate immunity. Most of the chemokines belong to the chemokine groups CC and CXC. To investigate the immune system of the olive flounder (Paralichthys olivaceus), an expression pattern specifically induced in the early developmental stages of analysis is examined using qRT-PCR. We also examined tissue-specific expression of both CC and CXC chemokine in healthy olive flounder samples. CC and CXC chemokine shows increased expression after immune-related organs are formed compared to expression during early development. CC chemokine was more highly expressed in the fin, but CXC chemokine showed higher expression in the gills, spleen, intestines, and stomach. Spatial and temporal expression analysis of CC and CXC chemokine were performed following viral hemorrhagic septicemia virus (VHSV) infection. CC chemokine showed high expression in the gills, which are respiratory organs, whereas CXC chemokine was more highly expressed in the kidneys, an immune-related organ. These results suggest that CC and CXC chemokine play an important role in the immune response of the olive flounder, and may be used as basic data for the immunological activity and gene analysis of it as well as other fish.

Cyclic tensile stress inhibits Wnt/${\beta}$-catenin signaling in human periodontal ligament cells

  • Kim, Ji-Young;Yang, Daum;Kim, Ha-Neui;Jung, Kyoung-Suk;Chang, Young-Il;Lee, Zang-Hee
    • International Journal of Oral Biology
    • /
    • v.34 no.2
    • /
    • pp.53-59
    • /
    • 2009
  • Periodontal ligament (PDL) tissue is a connective tissue that is interposed between the roots of the teeth and the inner wall of the alveolar bone socket. PDL is always exposed to physiologic mechanical force such as masticatory force and PDL cells play important roles during orthodontic tooth movement by synthesizing and secreting different mediators involved in bone remodeling. The Wnt/${\beta}$-catenin signaling pathway was recently shown to play a significant role in the control of bone formation. In the present study, we applied cyclic tensile stress of 20% elongation to cultured human PDL cells and assessed its impact after six days upon components of the Wnt/${\beta}$-catenin signaling pathway. RTPCR analysis showed that Wnt1a, Wnt3a, Wnt10b and the Wnt receptor LRP5 were down-regulated, whereas the Wnt inhibitor DKK1 was up-regulated in response to these stress conditions. In contrast, little change was detected in the mRNA expression of Wnt5a, Wnt7b, Fz1, and LRP6. By western blotting we found decreased expression of the ${\beta}$-catenin and p-GSK-3${\beta}$ proteins. Our results thus show that mechanical stress suppresses the canonical Wnt/${\beta}$-catenin signaling pathway in PDL cells.

Expression Patterns of SQS in Different Tissues in Amaranth Grains (Amaranthus cruentus L.)

  • Young-Jun Park
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.294-294
    • /
    • 2022
  • To date, there have been no reports on the cloning and characterization of a gene encoding SQS from Amaranthus, although there have been some reports on methods of extracting and purifying squalene from Amaranthus seeds. In this study, we monitored the expression pattern of the amaranth SQS gene in seeds at different developmental stages and in different tissues. The transcript expression pattern of the SQS gene was investigated using total RNA isolated from seeds at different stages of development. There were low levels of SQS transcripts at the early stage of seed development, and the levels remained low until the middle developmental stage. The expression of SQS increased rapidly to reach a peak at the mid-late developmental stage, and then declined dramatically. This pattern of expression was consistent with the results of RT-PCR analyses. All RNA samples generated a fragment of the expected size (183-bp). The amaranth SQS was expressed at low levels during the initial to middle stages of seed development, and its expression level increased at the mid-late development stage. Also The tissue-specific expression of amaranth SQS was determined by quantifying its mRNA in total RNA isolated from the leaves, petioles, stems, and roots of seedlings at the four- and six-leaf stages. Using qRT-PCR and RT-PCR analysis, we detected amaranth SQS transcripts in some of the tissues at the six-leaf stage, but in none of the tissues from plants at the four-leaf stage. SQS transcripts accumulated in almost equal amounts in stems and roots, while a lower level accumulated in leaves and petioles during seedling development at the four- to six-leaf stages. This study provides useful information about the molecular characterization of the SQS clone isolated from grain amaranth. A basic understanding of these characteristics will contribute to further studies on the amaranth SQS.

  • PDF

Epigenetic Reprogramming in Cloned Embryos

  • Kang, Yong-Kook;Han, Yong-Mahn;Lee, Kyung-Kwang
    • Proceedings of the KSAR Conference
    • /
    • 2001.10a
    • /
    • pp.25-31
    • /
    • 2001
  • During early development, a dramatic reduction in methylation levels occurs in mouse (Monk et al., 1987). The process of epigenetic reprogramming in early embryos erases gamete-specific methylation patterns inherited from the parents (Howlett & Reik 1991, Monk et al., 1987, Oswald et al., 2000, Sanford et al., 1984). This genome-wide demethylation process may be a prerequisite for the formation of pluripotent stem cells that are important for the later development (Reik & Surani 1997). During post-implantation development, a wave of de novo methylation takes place; most of the genomic DNA is methylated at defined developmental timepoints, whereas tissue-specific genes undergo demethylation in their tissues of expression (Kafri et al., 1992, Razin & Kafri 1994). Another demethylation-remethylation cycle of epigenetic reprogramming takes place during gametogenesis and is necessary for resetting of genomic imprinting (Solter 1988). The dynamic epigenetic reprogramming events appear to be basic and are probably conserved in eutherian mammals (see below). (omitted)

  • PDF

The Brassica rapa Rubber Elongation Factor Promoter Regulates Gene Expression During Seedling Growth in Arabidopsis thaliana and Brassica napus

  • Hong, Joon Ki;Lim, Myung-Ho;Kim, Jin A;Kim, Jung Sun;Lee, Seung Bum;Suh, Eun Jung;Lee, Soo In;Lee, Yeon-Hee
    • Plant Breeding and Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.289-300
    • /
    • 2014
  • A tissue-specific and developmentally expressed gene was isolated from Chinese cabbage (Brassica rapa L. ssp. pekinensis), designated BrREF (B. rapa Rubber elongation factor). BrREF transcripts were expressed at high levels in seedlings and at low levels in flower buds and roots. To study the activity of this promoter, the 2.2 kb upstream sequence of BrREF gene was fused to a β-glucuronidase (GUS) reporter gene and was introduced into Arabidopsis thaliana and B. napus by Agrobacterium-mediated transformation. Strong expression of GUS driven by the BrREF promoter was detected in the cotyledons and hypocotyls of transgenic plant seedlings, but GUS expression was weak in roots, excluding the root tips. GUS expression in the cotyledons and hypocotyls decreased dramatically as the seedlings matured and was not detected in the tissues of mature plants. During floral development, GUS expression was observed in immature anthers. These findings suggest that the BrREF promoter can modulate the tissue-specific and developmental expression of gene at the early stages of growth and development.

Mineralized Polysaccharide Transplantation Modules Supporting Human MSC Conversion into Osteogenic Cells and Osteoid Tissue in a Non-Union Defect

  • Ge, Qing;Green, David William;Lee, Dong-Joon;Kim, Hyun-Yi;Piao, Zhengguo;Lee, Jong-Min;Jung, Han-Sung
    • Molecules and Cells
    • /
    • v.41 no.12
    • /
    • pp.1016-1023
    • /
    • 2018
  • Regenerative orthopedics needs significant devices to transplant human stem cells into damaged tissue and encourage automatic growth into replacements suitable for the human skeleton. Soft biomaterials have similarities in mechanical, structural and architectural properties to natural extracellular matrix (ECM), but often lack essential ECM molecules and signals. Here we engineer mineralized polysaccharide beads to transform MSCs into osteogenic cells and osteoid tissue for transplantation. Bone morphogenic proteins (BMP-2) and indispensable ECM proteins both directed differentiation inside alginate beads. Laminin and collagen IV basement membrane matrix proteins fixed and organized MSCs onto the alginate matrix, and BMP-2 drove differentiation, osteoid tissue self-assembly, and small-scale mineralization. Augmentation of alginate is necessary, and we showed that a few rationally selected small proteins from the basement membrane (BM) compartment of the ECM were sufficient to up-regulate cell expression of Runx-2 and osteocalcin for osteoid formation, resulting in Alizarin red-positive mineral nodules. More significantly, nested BMP-2 and BM beads added to a non-union skull defect, self-generated osteoid expressing osteopontin (OPN) and osteocalcin (OCN) in a chain along the defect, at only four weeks, establishing a framework for complete regeneration expected in 6 and 12 weeks. Alginate beads are beneficial surgical devices for transplanting therapeutic cells in programmed (by the ECM components and alginate-chitosan properties) reaction environments ideal for promoting bone tissue.

Relationship between Plasminogen Activator (PA) and HSP-90 in Uterus Tissue during the Porcine Estrous Cycle (돼지의 발정 주기 동안 자궁조직에서 Plasminogen Activator(PA)와 HSP-90과의 관계)

  • Gu, Ha-Na;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.36 no.3
    • /
    • pp.219-223
    • /
    • 2012
  • The present study was performed to identify the relationship between plasminogen activator (PA) and Heat Shock Protein-90 (HSP-90) in porcine uterus tissues during the estrous cycle. Porcine uterus tissues were obtained from preovulatory (Pre-Ov), post-ovulatory (Post-Ov) and early to mid-luteal (Early-mid L) stages. The protein was extracted from uterus tissue by using M-PER Mammalian Protein Extraction Reagent. Proteins were refined by RIPA Buffer and quantified by BCA methods. As results, t-PA expression was significantly (p<0.05) higher from pre-ovulatory(Epithelium tissue: $29,067{\mu}g/{\mu}l$, Myometrium tissue: $30,797{\mu}g/{\mu}l$) compared to the post-ovulatory stage(Epithelium tissue: $54,357{\mu}g/{\mu}l$, Myometrium tissue: $53,270{\mu}g/{\mu}l$) and early to mid-luteal stage(Epithelium tissue: $42,380{\mu}g/{\mu}l$, Myometrium tissue: $43,139{\mu}g/{\mu}l$). On the other hand, the uPA expression indicated higher from early to mid-luteal stage (Epithelium tissue: $0.02198{\mu}g/{\mu}l$, Myometrium tissue: $0.02412{\mu}g/{\mu}l$) than pre-ovulatory stage (Epithelium tissue: $0.01577{\mu}g/{\mu}l$, Myometrium tissue: $0.01531{\mu}g/{\mu}l$) and post-ovulatory stage(Epithelium tissue: $0.01414{\mu}g/{\mu}l$, Myometrium tissue: $0.01429{\mu}g/{\mu}l$). However, expression of u-PA did not differ from each estrous cycle in the epithelium tissue and myometrium tissue(p<0.05). Expression of HSP-90 was differ t-PA and u-PA from pre-ovulatory in Epithelium tissue($25,423{\mu}g/{\mu}l$) and early to mid-luteal stage in epithelium tissue($177,922{\mu}g/{\mu}l$) and myometrium tissue($26,664{\mu}g/{\mu}l$). These results suggest that HSP-90 and u-PA were related with change of uterus cycle according to the reformation of the tissues in porcine uterus.

Tissue- and Reproductive Organ-specific Expression of Protease Nexin-1 in Sprague-Dawley Rat (흰쥐에서 단백질 분해효소 저해제, Nexin-1의 조직 및 생식기관 특이적 유전자 발현)

  • 고정재;김남근;김진규;최명진;정형민;서승염;김윤희;이현환;차광열
    • Development and Reproduction
    • /
    • v.2 no.2
    • /
    • pp.135-140
    • /
    • 1998
  • Protease Nexin-1 (PN-1) inhibits the activity of several serine proteases including thrombin, urokinase (uPA)-type plasminogen activator and trypsin. Tissue- and reproductive organ-specific mRNA levels of the PN-1 were investigated in Sprague-Dawley adult rat. PN-1 mRNA expression in rats was found in brain (forebrain, hindbrain), heart, liver, lung, ovary and oviduct. The level of PN-1 mRNA in male and female among the tissues was the highest in forebrain of the female. PN-1 expression in reproductive organs was found only in ovary and oviduct. These results suggest that PN-1 expression is dependent on the sex and may be related to folliculogenesis and early embryogenesis.

  • PDF

Expression of p63 during Early Craniofacial Development of the Mouse Embryo (생쥐의 초기 두개악안면 발생 중 p63의 발현 양상)

  • Akihiro, Hosoya;Lee, Jong-Min;Kim, Ji-Youn;Jung, Han-Sung;Choi, Sung-Won
    • Development and Reproduction
    • /
    • v.13 no.2
    • /
    • pp.89-95
    • /
    • 2009
  • p63 has been demonstrated to localize in stem cells and precursor cells of various epithelial tissues previously, but the localization of p63 throughout tooth formation, particularly during the enamel and root formation stages, remains to be adequately characterized. Therefore, in this study, we have demonstrated, via immunohistochemical methods, that p63 is ubiquitously expressed in the dental epithelium during tooth development. p63 was detected in the basal and suprabasal layers of the epithelia, including the skin, hair follicles, oral mucosa, and submandibular ducts. However, in the tooth region, all cells of the dental lamina, enamel organ, Hertwig's epithelial root sheath (HERS), and epithelial cell rests of Malassez (ERM) evidenced immunoreactivity for p63. These results indicate that p63 may perform different roles, other than stem cell maintenance, in tooth development.

  • PDF

Expressional Patterns of Adipocyte-Associated Molecules in the Rat Epididymal Fat during Postnatal Development Period

  • Lee, Ki-Ho;Kim, Nan Hee
    • Development and Reproduction
    • /
    • v.22 no.4
    • /
    • pp.351-360
    • /
    • 2018
  • The adipogenesis is a maturation process of pre-adipocyte cell into mature lipid-filled adipocyte cell. The adipogenesis begins at the late prenatal stage and continues until the early postnatal age. Because the adipogenesis and formation of adipose tissue persist during postnatal period and are precisely regulated by the action of numerous gene products, the present research was attempted to determine the expressional patterns of adipose tissue-associated genes in the rat epididymal fat pad at different postnatal ages, from 7 days to 2 years of ages, using a quantitative real-time PCR analysis. The basal expression levels of CCAAT/enhancer binding protein gamma, sterol regulatory element binding transcription factor 1, fatty acid binding protein 4, adiponectin, leptin, and resistin at the early postnatal ages were significantly lower than those at the elderly ages, even though a fluctuation of expressional levels was observed at some ages. The lowest expressional level of delta like non-canonical Notch ligand 1 was detected at 44 days and 5 months of ages. The expression of peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) was the highest at 44 days of age, followed by a diminished expression of $PPAR{\gamma}$ at the elderly ages. These results indicate the existence of a complex regulatory mechanism(s) for expression of adipose tissueassociated genes in the rat epididymal fat during postnatal period.