• Title/Summary/Keyword: Tissue Properties

Search Result 889, Processing Time 0.03 seconds

Cross-Linked Collagen Scaffold from Fish Skin as an Ideal Biopolymer for Tissue Engineering

  • Biazar, Esmaeil;Kamalvand, Mahshad;Keshel, Saeed Heidari;Pourjabbar, Bahareh;Rezaei-Tavirani, Mustafa
    • Korean Journal of Materials Research
    • /
    • v.32 no.4
    • /
    • pp.186-192
    • /
    • 2022
  • Collagen is one of the most widely used biological materials in medical design. Collagen extracted from marine organisms can be a good biomaterial for tissue engineering applications due to its suitable properties. In this study, collagen is extracted from fish skin of Ctenopharyngodon Idella; then, the freeze drying method is used to design a porous scaffold. The scaffolds are modified with the chemical crosslinker N-(3-Dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC) to improve some of the overall properties. The extracted collagen samples are evaluated by various analyzes including cytotoxicity test, SDS-PAGE, FTIR, DSC, SEM, biodegradability and cell culture. The results of the SDS-PAGE study demonstrate well the protein patterns of the extracted collagen. The results show that cross-linking of collagen scaffold increases denaturation temperature and degradation time. The results of cytotoxicity show that the modified scaffolds have no toxicity. The cell adhesion study also shows that epithelial cells adhere well to the scaffold. Therefore, this method of chemical modification of collagen scaffold can improve the physical and biological properties. Overall, the modified collagen scaffold can be a promising candidate for tissue engineering applications.

Effects of Mixing Ratio of Bagasse Pulp on Tissue Paper's Properties (Bagasse 펄프의 배합 비율이 화장지 특성에 미치는 영향)

  • Kim, Jeong-Jung;Han, Yun-Seok;Jeon, Byeong-Hoon;Han, Ki-Young;Jung, Chul-Hun;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.6
    • /
    • pp.72-77
    • /
    • 2013
  • Tissue and paper manufacturing companies have common problems with increasing cost of imported virgin pulp and the restriction of using woods in the forest. Possibility of using bagasse pulp for solving those problems was studied. In order to reduce the production cost and study the dependency on pulps, bagasse pulp has been studied for mixing with Sw-BKP and Hw-BKP. Optimum blending ratio of wood pulps and bagasse pulp to enhance tissue properties were analyzed. Various properties of the hand sheet after blending of wood pulp and bagasse pulp were measured. As results, the bagasse pulp could substitute the hard wood pulp with similar properties of tissue. Therefore, we judged that the bagasse pulp was suitable for replacement of the hardwood pulp.

A Review of tissue changes caused by joint immobilization and classification of contracture (관절고정에 의한 조직변화와 구축의 분류에 대한 고찰)

  • Yoon, Sang-Jib;Lee, Joon-Hee
    • Journal of Korean Physical Therapy Science
    • /
    • v.8 no.1
    • /
    • pp.727-734
    • /
    • 2001
  • Contracture is defined as the lack of full passive range of motion resulting from pint, muscle or soft tissue limitationprolonged Pint immobilization will result in stress and stretch deprivation and gradual development of contracture. the tissue changes caused by immobilization may be categorized as cellular modeling, ground substance and collagen response, and tissue response. contracture can be divided into three categories according to the anatomical location of pathological changes :arthrogenic, myogenic, soft tissue contractures Therapeutic approach of contracture is thermal or cold agents application, stretch or restoration of length, traction, manipulation, mobilization positioning and restoration of function. The purpose of this article is to review current concepts of mechanical properties and synthesis of collagen tissue and the underlying pathomechanics as it relates to evaluation and treatment of contracture.

  • PDF

Geometric and mechanical properties evaluation of scaffolds for bone tissue applications designing by a reaction-diffusion models and manufactured with a material jetting system

  • Velasco, Marco A.;Lancheros, Yadira;Garzon-Alvarado, Diego A.
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.385-397
    • /
    • 2016
  • Scaffolds are essential in bone tissue engineering, as they provide support to cells and growth factors necessary to regenerate tissue. In addition, they meet the mechanical function of the bone while it regenerates. Currently, the multiple methods for designing and manufacturing scaffolds are based on regular structures from a unit cell that repeats in a given domain. However, these methods do not resemble the actual structure of the trabecular bone which may work against osseous tissue regeneration. To explore the design of porous structures with similar mechanical properties to native bone, a geometric generation scheme from a reaction-diffusion model and its manufacturing via a material jetting system is proposed. This article presents the methodology used, the geometric characteristics and the modulus of elasticity of the scaffolds designed and manufactured. The method proposed shows its potential to generate structures that allow to control the basic scaffold properties for bone tissue engineering such as the width of the channels and porosity. The mechanical properties of our scaffolds are similar to trabecular tissue present in vertebrae and tibia bones. Tests on the manufactured scaffolds show that it is necessary to consider the orientation of the object relative to the printing system because the channel geometry, mechanical properties and roughness are heavily influenced by the position of the surface analyzed with respect to the printing axis. A possible line for future work may be the establishment of a set of guidelines to consider the effects of manufacturing processes in designing stages.

Estimation of Ultrasound Attenuation Coefficient by Homomorphic Deconvolution Method (Homomorphic Deconvolution 법에 의한 초음파 감쇄정수 추정)

  • Hong, Seung-Hong;Huh, Woong
    • Journal of Biomedical Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.39-46
    • /
    • 1984
  • In order to improve the performance of ultrasonic diagnostic equipment, it is important to development the signal processing considering the ultrasonic properties of biological medium and propagation mechanism in tissue. Attenuation coefficient is not only important factor to analyze propagation properties, but also it is significant to estimate it in view of tissue characterization, so we show one of the method to estimate attenuation coefficient of biological tissue and the results of estimation.

  • PDF

Measurements of Acoustic Properties of Tofu and Acorn Curd as Potential Tissue-mimicking Materials

  • Li Ying;Guntur S.R.Anjaneya Reddy;Choi Min Joo;Paeng Dong-Guk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.4E
    • /
    • pp.132-138
    • /
    • 2005
  • The purpose of this study is to measure the acoustic properties of Tofu and Acorn Curd (Dotori Muk), which are possibly used as tissue mimicking materials (TMMs). Due to its availability and low cost, Tofu was suggested as a TMM by several researchers who measured only sound speed and attenuation. The acoustic properties of Tofu and Muk including the backscattering coefficient were measured in this paper. Sound speed was measured by the time shift in a pulse echo setup. Attenuation coefficients and backscattering coefficients were measured by a broadband method using both 5 MHz and 10 MHz transducers in the frequency domain. The measured acoustic properties of both Tofu and Muk are observed to be similar to those of biological tissues such as beef liver or beef heart.

Virtual Environments for Medical Training: Soft tissue modeling (의료용 훈련을 위한 가상현실에 대한 연구)

  • Kim, Jung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.372-377
    • /
    • 2007
  • For more than 2,500 years, surgical teaching has been based on the so called "see one, do one, teach one" paradigm, in which the surgical trainee learns by operating on patients under close supervision of peers and superiors. However, higher demands on the quality of patient care and rising malpractice costs have made it increasingly risky to train on patients. Minimally invasive surgery, in particular, has made it more difficult for an instructor to demonstrate the required manual skills. It has been recognized that, similar to flight simulators for pilots, virtual reality (VR) based surgical simulators promise a safer and more comprehensive way to train manual skills of medical personnel in general and surgeons in particular. One of the major challenges in the development of VR-based surgical trainers is the real-time and realistic simulation of interactions between surgical instruments and biological tissues. It involves multi-disciplinary research areas including soft tissue mechanical behavior, tool-tissue contact mechanics, computer haptics, computer graphics and robotics integrated into VR-based training systems. The research described in this paper addresses the problem of characterizing soft tissue properties for medical virtual environments. A system to measure in vivo mechanical properties of soft tissues was designed, and eleven sets of animal experiments were performed to measure in vivo and in vitro biomechanical properties of porcine intra-abdominal organs. Viscoelastic tissue parameters were then extracted by matching finite element model predictions with the empirical data. Finally, the tissue parameters were combined with geometric organ models segmented from the Visible Human Dataset and integrated into a minimally invasive surgical simulation system consisting of haptic interface devices and a graphic display.

  • PDF

Biomechanics of Anterior Cruciate Ligament (전방십자인대의 생역학)

  • Kyung, Hee-Soo
    • Journal of the Korean Arthroscopy Society
    • /
    • v.1 no.1
    • /
    • pp.9-19
    • /
    • 1997
  • Biomechanics of the soft tissue arc different from that of bone. Soft tissue has characteristics of nonhomogeneous, no-linear, anisotropic, viscoelastic, and finite deformation. Biomechanics of ACL, one of the soft tissue, are briefly described : structural and mechanical properties, viscoelastic response, immobilization, kinematics and static function.

  • PDF

Invasive and non-invasive methods for estimating the optical properties of tissue at laser wavelengths (레이저 파장에서의 생체 침습적 및 비침습적 광학계수 측정 방법)

  • Yoon, Gil-Won
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.147-150
    • /
    • 1994
  • To predict light propagation in biological tissues irradiated by laser, the optical properties such as absorption and scattering coefficients are required. There have been various techniques for measuring these coefficients. One method requires tissue samples, often a slab of thin tissue, is invasive. On the other hand, non-invasive method usually measures back-scattered light from a subject with no physical intervent ions. Advantages and disvantages of using different methods are investigated. A careful attention should be made in order to select the best method for a given experimental condition since, even either for invasive or non-invasive method, accuracy is subject to governing models and sample preparations.

  • PDF