• Title/Summary/Keyword: Tissue Phantom

Search Result 318, Processing Time 0.026 seconds

A new phantom to evaluate the tissue dissolution ability of endodontic irrigants and activating devices

  • Kimia Khoshroo ;Brinda Shah;Alexander Johnson ;John Baeten ;Katherine Barry;Mohammadreza Tahriri ;Mohamed S. Ibrahim;Lobat Tayebi
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.4
    • /
    • pp.45.1-45.8
    • /
    • 2020
  • Objective: The aim of this study was to introduce a gelatin/bovine serum albumin (BSA) tissue standard, which provides dissolution properties identical to those of biological tissues. Further, the study evaluated whether the utilization of endodontic activating devices led to enhanced phantom dissolution rates. Materials and Methods: Bovine pulp tissue was obtained to determine a benchmark of tissue dissolution. The surface area and mass of samples were held constant while the ratio of gelatin and BSA were varied, ranging from 7.5% to 10% gelatin and 5% BSA. Each sample was placed in an individual test tube that was filled with an appropriate sodium hypochlorite solution for 1, 3, and 5 minutes, and then removed from the solution, blotted dry, and weighed again. The remaining tissue was calculated as the percent of initial tissue to determine the tissue dissolution rate. A radiopaque agent (sodium diatrizoate) and a fluorescent dye (methylene blue) were added to the phantom to allow easy quantification of phantom dissolution in a canal block model when activated using ultrasonic (EndoUltra) or sonic (EndoActivator) energy. Results: The 9% gelatin + 5% BSA phantom showed statistically equivalent dissolution to bovine pulp tissue at all time intervals. Furthermore, the EndoUltra yielded significantly more phantom dissolution in the canal block than the EndoActivator or syringe irrigation. Conclusions: Our phantom is comparable to biological tissue in terms of tissue dissolution and could be utilized for in vitro tests due to its injectability and detectability.

Manufacture and Image Characteristic Changes Observation by Temperature of Ultrasound Tissue Mimicking Phantom (초음파 Tissue Mimicking 팬텀의 제작과 온도 변화에 따른 영상 특성 변화 관찰)

  • Ma, Sang-Chull
    • Journal of radiological science and technology
    • /
    • v.39 no.2
    • /
    • pp.157-161
    • /
    • 2016
  • The purpose of this study is that in measures the acoustic propagate characteristics and temperature sensitivity of ultrasound tissue mimicking phantom(TM phantom). TM phantom manufacture according to the International Electronical Committee(IEC) guidelines for acoustic propagate characteristics of soft tissue. TM phantom was observed to have the image brightness and the image depth penetration decreases changes convergence which was the subject of ultrasound image characteristics in accordance with an external temperature that the change is reduced in temperature below $22^{\circ}C$. This study provide a basis t o create another TM Phantom and TM Phantom has been determined that it is appropriate for use in more than $22^{\circ}C$.

A Fat-Tissue Mimic Phantom for Therapeutic Ultrasound

  • Kim, Mi Seon;Kim, Ju Young;Jung, Hyun Du;Kim, Jae Young;Choi, Heung Ho
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.3
    • /
    • pp.153-159
    • /
    • 2014
  • As the number of treatments in the therapeutic ultrasound field targeted at fat tissue increase, the performance of the equipment should be evaluated for safety using a fat phantom. In this study, a fat phantom was fabricated using olive oil and a tissue-mimicking material (TMM) phantom. To evaluate the acoustic properties of the TMM phantom according to the changes in the olive oil, the composition ratio of a liquid mixture of olive oil with a surfactant was adjusted from 5-20% in 5% steps. The acoustic properties of the phantom were evaluated using the sound velocity, attenuation coefficient, density, and acoustic impedance. The experimental results showed that the sound velocity decreased with increasing amount of olive oil but the other acoustic properties did not change. In addition, the phantom using an olive-oil mixture with a 15% composition ratio was most similar to the acoustic characteristics of fat tissue with a sound velocity of 1477.35 m/s, an attenuation coefficient of 0.514 dB/MHz-cm, a density of $1.07g/cm^3$, and an acoustic impedance of 1.575 MRayl. These experimental results are expected contribute to the accuracy of the results using a TMM phantom and will be useful for the therapeutic ultrasound field targeted at subcutaneous fat tissue.

Analysis of Tissue Equivalent Characteristics of Agar Phantom for Hyperthermia Therapy (온열종양치료 한천 팬텀의 조직등가 특성 분석)

  • Jeong-Geun Park;Kyeong-Hwan Jeong;Jeong-Min Seo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.985-991
    • /
    • 2023
  • A tissue-equivalent phantom is necessary for quality control of hyperthermia therapy. However, since there is no phantom for this purpose, phantoms made from agar are being used in various studies. The tissue-equivalent properties of the agar phantom were confirmed by comparison with the tissue-equivalent material bolus in this study. CT images of the agar phantom and bolus were acquired, and tissue equivalent characteristics were analyzed with image analysis and dose calculation using a computerized radiation therapy planning system. The average pixel value was 96.960±10.999 in bolus, 108.559±8.233 in 3% agar phantom, and 111.844±8.651 in 4% agar phantom. Using the SSD technique, 100 cGy was prescribed at a depth of 1.5 cm and 6 MV X -ray was set to irradiated to 10x10 cm2, and the absorbed dose according to depth was calculated from the central axis of the beam. The intraclass correlation coefficient of dose distribution of bolus, 3% agar phantom, and 4% agar phantom was 0.979 (p<.001, 95%CI .957-.991). The density (g/cm3) at the point where the absorbed dose was calculated was 0.990±0.020 at the bolus, 1.018±0.020 at the 3% agar phantom, and 1.035±0.024 at the 4% agar phantom. In this study, the internal density distribution and uniformity of the agar phantom were confirmed to be appropriate as a tissue equivalent material by analysis of CT images and a computerized radiation therapy planning system.

Tissue Mimicking Phantom for Visualization of Temperature Elevation Caused by Ultrasound (초음파에 의한 온도상승 가시화용 생체 모의매질)

  • Jung, Ji-Hee;Kim, Jung-Soon;Ha, Kang-Lyeol;Kim, Moo-Joon;Cao, Yonggang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.5
    • /
    • pp.291-299
    • /
    • 2014
  • To probe the temperature elevation effect caused by ultrasound, a tissue mimicking phantom was newly suggested. A carrageenan gel was adopted to realize not only the required transparency for visualization but also acoustic characteristics similar to human tissue. To visualize the temperature elevation inside phantom, thermochromic film with a critical temperature of discoloration was introduced. Acoustic characteristics of the tissue mimicking phantom were examined when the concentrations of carrageenan and sucrose changed. As the results, the attenuation coefficient of the phantom could be controlled in the range of 0.44~0.49 dB/cm/MHz, and the acoustic impedance in the range of 1.52~1.77 Mrayls. We could control the acoustic characteristics of the phantom by different concentration of carrageenan and sucrose, and it was possible to examine the temperature elevation caused by ultrasound in the phantom. The suggested method was verified by noninvasively visualizing the temperature elevation due to planar and focused ultrasound using the fabricated phantom.

A Basic Study on the Variation of Temperature Characteristics for Attenuation Coefficient and Sound Velocity in Biological Tissues

  • Park, Heung-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.273-282
    • /
    • 1993
  • This study is concerned with the temperature dependence characteristics of ultrasound parameters in biological tissues, which are basic on the noninvasive deep body temperature estimation. Used parameters are ultrasonic attenuation coefficient and sound velocity In order to accomplishment our purpose, several signal processing methods were used. Attenua4iorl coefficient was estimated by spectral difference method and sound velocity was estimated by P-P method. And we also examined these methods through a series of IN VITRO experi mentis that used tissue-mimicking phantom samples and biological tissue samples. In order to imitate the biological soft tissue two kinds of phantom samples are used, one is agar phantom sample which is composed of agar, graphite, N-propyl alcohol and distilled water, and the other is fat phantom sample which is composed of pure animal fat. And the ultrasound transmission mode and reflection mode experiments are performed on the pig's spleen, kidney and fat. As a result, it is found that the temperature characteristics are uniform in case of phan- tom samples but not in biological tissues because of complicate wave propagation within them. Consequently, the possibility of temperature measurement using ultrasound on biological tissue is confirmed and its results may contribute to the establishment of reference values of internal temperature measurement of biological tissues.

  • PDF

Visualization of Temperature Distribution Deep Inside the Agar Gel Tissue Phantom Heated Using Moxibustion and 1064 nm Infrared Laser (쑥뜸과 1064 nm 파장의 근적외선 레이저로 가열된 아가젤 조직 팬텀 심부의 온도분포 가시화)

  • Cho, Ji-Yong;Kim, Jung-Kyung
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.4
    • /
    • pp.54-59
    • /
    • 2010
  • A laser moxibustion therapy device having effect similar to that of traditional moxibustion is being developed using 1064 nm infrared laser. The therapy device allows direct interaction of laser light with the tissue rendering temperature distribution both on the skin surface and deep under the skin. We made a device that could measure temperature of deep under the surface of agar gel tissue phantom using thermocouples. A thermal imaging camera was used to verify results from the temperature measurement device. We compared the characteristics of heat transfer inside the tissue phantom during moxibustion and laser irradiation. The temperature distribution measured by thermocouples was found to be similar to that of distribution given by thermal imaging camera.

A Study on the Efficiency Evaluation of Ultrasound Therapy Using Varicose Vein Simulated Tissue Phantom and Tissue Equivalent Phantom (하지정맥류 모사 생체조직 팬텀과 조직등가 팬텀을 이용한 초음파 치료효과 평가에 관한 연구)

  • Kim, Ju-Young;Jung, Tae-Woong;Shin, Kyoung-Won;Noh, Si-Cheol;Choi, Heung-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.427-433
    • /
    • 2018
  • Because of the expectation of the non-invasive treatment effect, Various studies on the treatment of varicose veins using focused ultrasound are reported. In this study, the bio-tissue phantom and tissue equivalent phantom that can be applied to estimation of ultrasonic varicose veins treatment effect. Each phantom was evaluated for its usefulness by evaluating the acoustic characteristics and the shrinkage rate according to the ultrasonic irradiation. A multi-layer structure phantom with three layers of skin, fat, and muscle was constructed considering the structure of the tissue where the varicose veins occurred. The materials constituting each layer were made to have characteristics similar to human body. In addition, the multi-layered phantoms with blood vessel mimic tube, with bovine blood vessel, and with animal tissue were fabricated. The degree of shrinkage of blood vessel mimic material and vascular tissue according to ultrasonic irradiation was evaluated using B-mode image. As the results of this study, it was thought that the proposed phantom could be used effectively in the evaluation of ultrasonic varicose veins treatment. In addition, it is thought that these phantoms could be applied to the development of varicose vein treatment device using the focused ultrasound and the verification of the therapeutic effect.

A Study on the Actual Output and Thermal Effect in Tissue Mimicking Phantom by the Material of the Ultrasonic Transducer (초음파트랜스듀서의 재질에 따른 실출력과 인체모사조직의 온열효과에 관한 연구)

  • Yoo, Sang-Hyun;Choi, Won-Jae;Lee, Seung-Won
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.10 no.1
    • /
    • pp.91-97
    • /
    • 2015
  • PURPOSE: In this study investigated the thermal effect in tissue mimicking phantom by the material of the ultrasonic transducer in low intensity sonication. METHODS: The material of the ultrasonic transducer was made of ceramic, stainless steel, aluminum. Korea Testing Laboratory was measured of the three kinds of materials the total output of the ultrasonic transducer. Each material was measured core temperature and the actual output depending on the type of transducer. Agarose tissue mimicking phantom and silicone tissue mimicking phantom was made. Transducers made of three kinds of materials were emitted in the phantom. It is shown as a graph about time and temperature and the surface temperature rising speed and deep temperature rise rate was investigated. RESULTS: Ceramic transducers were highest output. Higher than the stainless steel transducer, aluminum had the lowest total output. Deep temperature was the highest in the ceramic transducer, and the surface temperature was the highest in the stainless steel transducer. Thermal images of ceramic transducer showed that a valid output is formed deeper wider than the metal. CONCLUSION: Ceramic transducer is confirmed the excellence than the metal transducer in deep thermal effect and the actual output of the ultrasound.

The Experimental Study of Heat Generation Efficiency of Magnetic Hyperthermia System (자기 온열 시스템의 열 발생 효율에 관한 실험적 연구)

  • Song, Young-Jin;Oh, Jung-Hwan
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.2
    • /
    • pp.33-39
    • /
    • 2011
  • We demonstrated heat generation efficiency of the magnetic hyperthermia system to find optimal condition using gelatin tissue phantom. Magnetic hyperthermia induction can be used to make heat generation with different concentration of $Fe_3O_4$ iron oxide inside tissue phantom and magnetically labeled cells by applying AC magntic field at a frequency of 145 kHz. It was observed that the maximum temperature achieved in the magnetic gelatin tissue phantom increased with the concentration of $Fe_3O_4$ iron oxide and alternating magnetic field intensity. Results were discussed with respect to further optimization of therapeutic technique for biomedical application with modified functional nanoparticles.