• Title/Summary/Keyword: Tissue Engineering

Search Result 1,867, Processing Time 0.027 seconds

An Experimental Study for the Relationship of Photon Flux Path ann Layered Properties of Biological Tissue with S- D Separation (S-D간격 변화에 따른 광양자의 경로와 생체조직의 계층성에 대한 실험적 연구)

  • 고한우
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.1
    • /
    • pp.35-40
    • /
    • 1994
  • A probe was designed to study the relationship of photon flux path and layered properties of bilogical tissue. The result shows that different wavelengths have different flux path and maximum reflectance position with separation. The source-detector separations on maximum reflectance of IR and GR were 7.5 mm and 2.5 mmm each other and layered properties of tissue can be discriminated bye the change of S-D separation using designed probe.

  • PDF

A Study on Optical Properties in Biological Tissue Using A Photon Path Diffusion Model (광 항적경로 모델을 이용한 피하조직에서의 광 특성에 관한 연구)

  • 임현수
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.265-274
    • /
    • 1994
  • This paper proposes a method of noninvasive reflectance light to measure the blood fractional volume (Vb) and oxygen saturation ($SO_2$) of biological tissue. We chose the red light of 660nm and infrared light of 880nm. In Vivo reflectance data were obtained by the physiological changes front the surface of the skin over the calf in human subject. The reflected light intensity from different layers within a biological tissue was measured by specially designed reflectometer to apply photon path diffusion model. The collected data represent the changes of blood (ractional volume and oxygen saturation at each reflected light wavelengths. The data evaluation was assessed by examining the slopes of the plotted indices for the changes in oxygen saturation and blood (ractional volume. The results presented in this paper claim that light reflectance can separately discriminate the change of blood volume and that of oxygenation in muscle and also in skin.

  • PDF

Electrochemical Kinetic Assessment of Rose Tissue Immobilized Biosensor for the Determination of Hydrogen Peroxide (과산화수소 정량을 위한 장미조직 함유 바이오센서의 전기화학 속도론적 고찰)

  • Rhyu, Keun-Bae
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.107-112
    • /
    • 2014
  • Using a chlorosulphonated polyethylene rubber solution for a binder of graphite powder and ferrocene for a mediator, a rose leaf tissue-embedded biosensor was built. Linearity on the Hanes-Woolf plot showed the reduction of the substrate was attained through the catalytic power of the rose peroxidase in the experimental range of electrode potential. Furthermore, 10 or more electrochemical parameters demonstrated that the electrode exerts its sensing ability quantitatively. The foregoing gave the full conviction that rose tissue can be used in place of the currently marketed enzyme for the practical use of enzyme electrode.

An Overview of Laser-assisted Bioprinting (LAB) in Tissue Engineering Applications

  • Ventura, Reiza Dolendo
    • Medical Lasers
    • /
    • v.10 no.2
    • /
    • pp.76-81
    • /
    • 2021
  • Biological tissues and organs are composed of different arrays of cells, biochemical cues, and extracellular matrices arranged in a complex microarchitecture. Laser-Assisted Bioprinting (LAB) is an emerging and promising technology that is reproducible with high accuracy that can be used for fabricating complex bioengineered scaffolds that mimic tissues and organs. The LAB process allows researchers to print intricate structural scaffolds using cells and different biomaterials essential for facilitating cell-scaffold interaction and to induce tissue and organ regeneration which cannot be achieved in a traditional scaffold fabrication. This process can fabricate artificial cell niches or architecture without affecting cellular viability and material integrity. This review tackles the basic principles and key aspects of Laser-Assisted Bioprinting. Recent advances, limitations, and future perspectives are also discussed.

Electrospun poly(D,L-lactic acid)/gelatin membrane using green solvent for absorbable periodontal tissue regeneration

  • Dayeon Jeong;Juwoong Jang;Deuk Yong Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.3
    • /
    • pp.104-109
    • /
    • 2023
  • Electrospinning was performed using an eco-friendly solvent composed of acetic acid, ethyl acetate and distilled water to investigate the effect of gelatin concentration on mechanical properties and cytotoxicity of absorbable poly(D,L-lactic acid) (PDLLA)/gelatin blend membrane. The tensile stress, strain at break, and WUC of the PDLLA/gelatin (97/3) scaffold at 26 wt% concentration were determined to be 3.9 ± 0.7 MPa, 37 ± 1.3 %, and 273 ± 33 %, respectively. FT-IR results revealed that PDLLA and gelatin were bound only by van der Waals interactions. The cell viability of PDLLA/gelatin membranes containing 0 %, 1 %, 2 %, 3 %, and 4 % gelatin were more than 100 %, which makes all membranes highly suitable as a barrier membrane for absorbable periodontal tissue regeneration due to their marketed physical properties and biocompatibility.

Altered lipid metabolism as a predisposing factor for liver metastasis in MASLD

  • So Jung Kim;Jeongeun Hyun
    • Molecules and Cells
    • /
    • v.47 no.2
    • /
    • pp.100010.1-100010.12
    • /
    • 2024
  • Recently, the incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing due to the high prevalence of metabolic conditions, such as obesity and type 2 diabetes mellitus. Steatotic liver is a hotspot for cancer metastasis in MASLD. Altered lipid metabolism, a hallmark of MASLD, remodels the tissue microenvironment, making it conducive to the growth of metastatic liver cancer. Tumors exacerbate the dysregulation of hepatic metabolism by releasing extracellular vesicles and particles into the liver. Altered lipid metabolism influences the proliferation, differentiation, and functions of immune cells, contributing to the formation of an immunosuppressive and metastasis-prone liver microenvironment in MASLD. This review discusses the mechanisms by which the steatotic liver promotes liver metastasis progression, focusing on its role in fostering an immunosuppressive microenvironment in MASLD. Furthermore, this review highlights lipid metabolism manipulation strategies for the therapeutic management of metastatic liver cancer.

A study for improving the surgical mess using palatal and buccal mucosal incisions in oral and maxillofacial area (구개점막과 협점막의 절개에 사용되는 칼의 개선을 위한 기초 연구)

  • Seo Byoung-Moo;Choi Jin-Young;Lee Jong-Ho;Kim Myung-Jin;Choung Pill-Hoon
    • Korean Journal of Cleft Lip And Palate
    • /
    • v.4 no.1
    • /
    • pp.1-11
    • /
    • 2001
  • Disposable blade is widely used for palatal and oral mucosal incision in oral and maxillofadal surgery nowadays, But its design and durability need for improvement, Especially, there are so many hard tissues intraoral area, such as bone and tooth, therefor the sharpness of the surgical blade was easily destroyed, The purpose of this study was to make basic data for developing new design of surgical blade using in oral and maxillofacial area including for the patients who have cleft lip and palate deformities, Some questionnaires about the usefulness of currently used surgical blades were sent to 150 dentists, the 54 of them made a reply, Secondly, The used-once blade and fresh new blade were examined under the scanning electron microscope with the 4000-times magnification, Lastly, the tissue reaction following the surgical incision with a fresh-new and a used blade on rat buccal cheek mucosa and hard palate was evaluated with light microscope with hematoxilin-eosin staining, The time interval from the surgical trauma to taking a sample were 1 day, 3 days, 7 days, and 14 days, At each time schedule, 2 Sprague-Dawley rats were sacrificed, Many dentists were agreed to need for changing the design of the surgical blades and also demand to improve the durability of the blades, They were also eager to adopt the new design of blade if it was available, The blade used in surgical extraction procedure was heavily damaged in its sharpe edge of number 15 blade, The histological differences were not prominent, but the delayed healing was detected in buccal mucosal defects especially in the surgical group with used blade, There are slight different changes in hard palatal defects between a used and a new blade group, In this study, we could find that there are imperative demanding on improvement of surgical blade design and durability for oral and maxillofadal area, The blade currently using in surgical extraction was easily damaged, The animal model of this study was not perfect for the purpose of this study.

  • PDF

Hierarchical Non-Rigid Registration by Bodily Tissue-based Segmentation : Application to the Visible Human Cross-sectional Color Images and CT Legs Images (조직 기반 계층적 non-rigid 정합: Visible Human 컬러 단면 영상과 CT 다리 영상에 적용)

  • Kim, Gye-Hyun;Lee, Ho;Kim, Dong-Sung;Kang, Heung-Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.259-266
    • /
    • 2003
  • Non-rigid registration between different modality images with shape deformation can be used to diagnosis and study for inter-patient image registration, longitudinal intra-patient registration, and registration between a patient image and an atlas image. This paper proposes a hierarchical registration method using bodily tissue based segmentation for registration between color images and CT images of the Visible Human leg areas. The cross-sectional color images and the axial CT images are segmented into three distinctive bodily tissue regions, respectively: fat, muscle, and bone. Each region is separately registered hierarchically. Bounding boxes containing bodily tissue regions in different modalities are initially registered. Then, boundaries of the regions are globally registered within range of searching space. Local boundary segments of the regions are further registered for non-rigid registration of the sampled boundary points. Non-rigid registration parameters for the un-sampled points are interpolated linearly. Such hierarchical approach enables the method to register images efficiently. Moreover, registration of visibly distinct bodily tissue regions provides accurate and robust result in region boundaries and inside the regions.

Trend and Current Status of Tissue Engineering and Regenerative Medicine (생체 조직공학.재생의학 바이오 장기의 현재와 미래)

  • Kim, Moon-Suk;Khang, Gil-Son;Lee, Il-Woo;Lee, Hai-Bang
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.1
    • /
    • pp.58-64
    • /
    • 2007
  • Tissue engineering and regenerative medicine(TERM) is the application of principles and methods of engineering and life sciences to creat devices or biological substitutes for study, restoration, modification, and assembly of functional tissues. TERM is an emerging interdisplinary area of research and development that has the potential to revolutionize methods of health care treatment. Current status and trend of TERM's R&D is reviewed in this paper in respect to the prospective of future needs.