DOI QR코드

DOI QR Code

Electrochemical Kinetic Assessment of Rose Tissue Immobilized Biosensor for the Determination of Hydrogen Peroxide

과산화수소 정량을 위한 장미조직 함유 바이오센서의 전기화학 속도론적 고찰

  • Rhyu, Keun-Bae (Department of Applied Chemistry, Cheongju University)
  • 유근배 (청주대학교 응용화학과)
  • Received : 2013.09.30
  • Accepted : 2013.12.11
  • Published : 2014.02.10

Abstract

Using a chlorosulphonated polyethylene rubber solution for a binder of graphite powder and ferrocene for a mediator, a rose leaf tissue-embedded biosensor was built. Linearity on the Hanes-Woolf plot showed the reduction of the substrate was attained through the catalytic power of the rose peroxidase in the experimental range of electrode potential. Furthermore, 10 or more electrochemical parameters demonstrated that the electrode exerts its sensing ability quantitatively. The foregoing gave the full conviction that rose tissue can be used in place of the currently marketed enzyme for the practical use of enzyme electrode.

흑연가루의 결합재로 클로로술폰화 폴리에틸렌 고무용액을, 매개체로 ferrocene을 사용하여 장미조직을 고정한 과산화수소 정량 바이오센서를 제작하였다. 실험 전극전위 영역에서 보여준 Hanes-Woolf 도시의 선형성은 기질의 환원이 장미 과산화효소의 촉매력에 의한 것임을 보여 주었다. 또 얻어진 10개 이상의 전기화학 파라미터들은 전극이 정량적으로 성능을 발휘하고 있음을 입증하였다. 이런 사실들은 효소전극의 실용화를 위하여 장미조직이 상업용 과산화효소를 대치하여 사용될 수 있음을 확신시켜 주는 것이었다.

Keywords

References

  1. I. Sax, Hawley's Condensed Chemical Dictionary, 168, Van Nostrand Reinhold, NY, USA (1987).
  2. J. Wang, H. Ye, Z. Jiang, and J. Huang, Determination of diethylstilbestol by enhancement of luminol-hydrogenperoxide-tetrasulfonated cobalt phthalocyanine chemiluminescence, Anal. Chim. Acta, 508, 171-176 (2004). https://doi.org/10.1016/j.aca.2003.12.003
  3. B. Tang and Y. Wang, Spectrofluorimetric determination of both hydrogen peroxide and -O-O-H in polyethylene glycols (PEGs) using-2-hydroxy-1-naphthaldehyde thiosemicarbazone (HNT) as substrate for horseradish peroxidase (HRP), Spectrochim. Acta, Part A, 59, 2867-2874 (2003). https://doi.org/10.1016/S1386-1425(03)00107-0
  4. S. Svensson, A. C. Olin, M. Larstad, G. Ljungkvist, and K. Toren, Determination of hydrogen peroxide in enhaled breath condensate by flow injection analysis with fluorescence detection, J. Chromatogr. B, 809, 199-203 (2004). https://doi.org/10.1016/j.jchromb.2004.06.027
  5. E. Casero, M. Darder, F. Pariente, and E. Lorenzo, Peroxidase enzyme electrodes as nitric oxide biosensors, Anal. Chim. Acta, 403, 1-9 (2000). https://doi.org/10.1016/S0003-2670(99)00555-3
  6. W. Zwirtes de Oliveira, and I. C. Vieira, Immobilization procedures for the development of a biosensor for the determination of hydroquinone using chitosan and glio (salanum glio), Enzyme Microb. Technol., 38, 449-456 (2006). https://doi.org/10.1016/j.enzmictec.2005.06.019
  7. S. Tingry, C. Innocent, S. Touli, A. Deratani, and P. Seta, Carbon paste biosensor for phenol detection of impregnated tissue: modification of selectivity by using $\beta$-cyclodextrin-containing PVA membrane, Mater. Sci. Eng. C, 26, 222-226 (2006). https://doi.org/10.1016/j.msec.2005.10.071
  8. J. Wang, J. W. Mo, S. F. Li, and J. Porter, Comparison of oxygen- rich and mediater-based glucose-oxidase carbon-paste electrodes, Anal. Chim. Acta, 441, 183-189 (2001). https://doi.org/10.1016/S0003-2670(01)01116-3
  9. E. Crouch, D. C. Cowell, S. Hoskins, R. W. Pitsson, and J. P. Hart, Amperometric, screen-printed, glucose biosensor for analysis of human plasma samples using a biocomposite water-based carbon inc incorporating glucose oxidase, Anal. Biochem., 347, 17-23 (2005). https://doi.org/10.1016/j.ab.2005.08.011
  10. F. M. Tian, B. Xu, L. D. Zhu, and G. Y. Zhu, Hydrogen peroxide biosensor with enzyme entrapped within electrodeposited polypyrrole based on mediated sol-gel derived composite carbon electrode, Anal. Chim. Acta, 443, 9-16 (2001). https://doi.org/10.1016/S0003-2670(01)01187-4
  11. S. Gaspar, K. Habermuller, E. Csoregi, and W. Schuhmann, Hydrogen peroxide sensitive biosensor based on plant peroxidases entrapped on Os-modified polypyrrole films, Sens. Actuators B, 72, 63-68 (2001). https://doi.org/10.1016/S0925-4005(00)00633-X
  12. T. J. Cheng, T. M. Lin, and H. C. Chang, Physical adsorption of protamine for heparin assay using a quartz crystal microbalance and electrochemical impedance spectroscopy, Anal. Chim. Acta, 462, 261-273 (2002). https://doi.org/10.1016/S0003-2670(02)00335-5
  13. J. J. Wang and M. S. Lin, Horseradish-root-modified carbon paste electrode, Electroanalysis, 1, 43-48 (1989). https://doi.org/10.1002/elan.1140010107
  14. H. Horie and G. A. Rechnitz, Hybrid tissue/enzyme biosensor for pectin, Anal. Chim. Acta, 306, 123-127 (1995). https://doi.org/10.1016/0003-2670(94)00669-D
  15. H. S. Kwon, I. K. Park, K. J. Yoon, and M. L. Seo, Plant tissue-based amperometric sensor for determination of phenols in methylene chloride, J. Kor. Chem. Soc., 44, 376-379 (2000).
  16. B. G. Lee, K. J. Yoon, and H. S. Kwon, Spinach root-tissue based amperometric biosensor for the determination of hydrogen peroxide, Anal. Sci. Tech., 13, 315-322 (2000).
  17. K. J. Yoon, Optimum pH of the reduction of hydrogen peroxide at a tobacco plant tissue based amperometric biosensor, J. Kor. Chem. Soc., 48, 654-658 (2004). https://doi.org/10.5012/jkcs.2004.48.6.654
  18. H. S. Kwon, E. H. Jin, K. J. Yoon, and Y. N. Pak, Mushroom-juice based gold electrode for the determination of phenols, J. Kor. Chem. Soc., 49, 224-228 (2005). https://doi.org/10.5012/jkcs.2005.49.2.224
  19. B. G. Lee, S. W. Park, and K. J. Yoon, Electrochemical properties of the mugwort-embedded biosensor for the determination of hydrogen peroxide, Anal. Sci. Tech., 19, 58-64 (2006).
  20. H. S. Kwon, H. J. Kim, K. J. Yoon, and Y. N. Pak, Chard root-tissue based biosensor for the determination of dopamine, J. Kor. Chem. Soc., 51, 291-297 (2007). https://doi.org/10.5012/jkcs.2007.51.3.291
  21. K. J. Yoon, S. Y. Pyun, and H. S. Kwon, Chicken liver tissue- based amperometric biosensor for the determination of hydrogen peroxide, J. Kor. Chem. Soc., 41, 343-350 (1997).
  22. K. J. Yoon, Electrochemical Investigation of Animal Tissue Embedded Biosensor Bound with Ethylene-Propylene Rubber, Bull. Kor. Chem. Soc., 31, 2913-2917 (2010). https://doi.org/10.5012/bkcs.2010.31.10.2913
  23. H. S. Dho and K. J. Yoon, Electrochemical kinetic study of amperometric hydrogen peroxide biosensor fabricated using SBR, J. Ind. Eng. Chem., 17, 254-258 (2011). https://doi.org/10.1016/j.jiec.2011.02.016
  24. J. A. Brydson, Rubbery materials and their compounds, 291, Elsevier Applied Science, London and New York (1998).
  25. A. Mansouri, D. P. Makris, and P. Keflas, Determination of hydrogen peroxide scavenging activity of cinnamic and benzoic acids employing a highly sensitive peroxyoxalate chemiluminescence-based assay, J. Pham. Biomed. Anal., 39, 22-26 (2005). https://doi.org/10.1016/j.jpba.2005.03.044
  26. R. F. P. Nogueria, M. C. Oliveira, and W. C. Paterlini, Simple and fast spectrophotometric determination of $H_2O_2$ in photo-fenton reactions using metavanadate, Talanta, 66, 86-91 (2005). https://doi.org/10.1016/j.talanta.2004.10.001
  27. E. Graft, J. R. Mahoney, R. G. Bryant, and J. W. Eaton, Iron-catalyzed hydroxyl radical formation, J. Biol. Chem., 259, 3620-3624 (1984).
  28. E. S. Henle, and S. Linn, Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide, J. Biol. Chem., 272, 19095-19098 (1997). https://doi.org/10.1074/jbc.272.31.19095
  29. K. J. Yoon. A new strategy for determining optimum pH of isozymes, Bull. Kor. Chem. Soc., 25, 997-1002 (2004). https://doi.org/10.5012/bkcs.2004.25.7.997
  30. K. J. Yoon, Electrochemical Studies on the voltammetric characteristics of hydrogen peroxide biosensor immobilized by natural rubber, J. Kor. Chem. Soc., 52, 197-202 (2008). https://doi.org/10.5012/jkcs.2008.52.2.197
  31. A. N. Diaz, M. C. R. Peinado, and M. C. T. Minguez, Sol-gel horseradish peroxidase biosensor for hydrogen peroxide detection by chemiluminescence, Anal. Chim. Acta, 363, 221-227 (1998). https://doi.org/10.1016/S0003-2670(98)00080-4
  32. Y. H. Yang, M. H. Yang, H. Wang, L. Tang, G. L. Shen, and R. Q. Yu, Inhibition biosensor for determination of nicotine, Anal. Chim. Acta, 509, 151-157 (2004). https://doi.org/10.1016/j.aca.2003.12.028
  33. X. Chen, J. Z. Zhang, B. Q. Wang, G. J. Cheng, and S. J. Dong, Hydrogen peroxide biosensor based on sol-gel-derived glasses doped with Eastman AQ polymer, Anal. Chim. Acta, 434, 255-260 (2001). https://doi.org/10.1016/S0003-2670(01)00830-3

Cited by

  1. Electrochemical Properties of Tobacco Peroxidase Incorporated Enzyme Electrode Bound with CSM Rubber vol.25, pp.5, 2014, https://doi.org/10.14478/ace.2014.1047
  2. 과산화수소 정량을 위한 서양고추냉이 과산화효소 대용 아카시아의 활용 vol.28, pp.3, 2014, https://doi.org/10.14478/ace.2017.1033